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An exact tree projection algorithm for wavelets
Coralia Cartis and Andrew Thompson*

Abstract—We propose a dynamic programming algorithm for
projection onto wavelet tree structures. In contrast to other
recently proposed algorithms which only give approximate tree
projections for a given sparsity, our algorithm is guaranteed to
calculate the projection exactly. We also prove that our algorithm
has O(Nk) complexity, where N is the signal dimension and k
is the sparsity of the tree approximation.

Index Terms—Sparse representations, wavelets, dynamic pro-
gramming, complexity analysis, compressed sensing.
EDICS categories: DSP-SPARSE, MLSAS-SPARSE.

I. INTRODUCTION

The discrete wavelet transform is a much-used tool in
digital signal processing, especially in image processing, since
it provides sparse representations for piecewise-smooth sig-
nals [1]. Wavelets have a multi-scale structure in which a
signal is convolved with dilations and translations of some
‘mother wavelet’, which induces a natural dyadic tree structure
upon the wavelet coefficients. Since wavelets essentially detect
discontinuities, large wavelet coefficients of piecewise smooth
signals are often propagated down branches of the tree. This
suggests that sparse approximations of such signals have
additional structure: they are tree-sparse, by which we mean
that they are supported on a rooted subtree [2], see Section II.
This paper concerns the task of finding an exact tree projection,
namely a tree-sparse vector of a given sparsity which is closest
in Euclidean norm to some given signal vector.

Tree projections, or approximations thereof, predate the
arrival of wavelets. An early example of their computation
is found in the pruning of decision tree structures known as
classification and regression trees (CART) [3], [4], [5]. With
the emergence of wavelets, tree approximations also began to
be used in the context of wavelet-based compression [6], [7]
and orthogonal best-basis methods [8], [5], [9]. More recently,
algorithms for tree-based Compressed Sensing have been pro-
posed which require the computation of tree projections [10],
[2]. Furthermore, recovery guarantees have been obtained for
these algorithms which depend crucially on the assumption
that an exact tree projection is computed in every iteration of
the algorithm [10], [2].

Several algorithms have been proposed for wavelet tree
projection, and the summary by Baraniuk in [11] describes
three possible approaches: Greedy Tree Approximation (GTA),
the Condensing Sort and Select Algorithm (CSSA), and
the Complexity-Penalized Sum of Squares (CPSS). GTA [7]
proceeds by growing the tree from the root node in a
‘greedy’ fashion by making a series of locally optimal choices.
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However, such an approach is only guaranteed to find an
exact tree projection in the idealized case in which the
wavelet coefficients are monotonically nonincreasing along
the branches [11]. The CSSA was originally proposed by
Baraniuk and Jones [12] in the context of optimal kernel
design, and solves a linear programming (LP) relaxation of
the exact tree projection problem. The CPSS approach has
its roots in the minimal cost-complexity pruning algorithm for
CART [3], and was later developed by Donoho in the context
of wavelet approximations [5], [9]. This algorithm solves a
Lagrangian relaxation of the exact tree projection problem,
in which the sparsity constraint is removed and penalized in
the objective function instead. We argue in Section II that,
since both the CSSA and CPSS solve relaxations, neither
algorithm is guaranteed to find an exact tree projection for
a given sparsity. Since the theoretical results mentioned above
require an exact tree projection, a crucial question is whether
it is possible to guarantee the computation of an exact tree
projection in polynomial time.

In this paper, we propose an algorithm for exact tree pro-
jection in the context of wavelets. We make use of a Dynamic
Programming (DP) approach which has been used before in
other contexts. An early reference is Breiman et al. [3], where
it is proved that such an algorithm exists in the context of
CART decision trees. The algorithm, referred to as optimal tree
pruning, was then formally stated by Bohanec and Bratko [4],
who also proved that it has complexity O(N2), where N is
the signal dimension. The same exact tree projection approach
was also used in the context of orthogonal best-basis selection
in [8]. Our algorithm adopts the same basic approach as in [4],
but this time in the context of wavelet approximation; further
distinctions to [4] are given in Section III. We also prove that
our algorithm has low-order polynomial complexity, namely
O(Nk), where k is the sparsity of the tree approximation,
which represents an improvement over the result in [4].

Some closely-related recent work [13] proves that there
exists a polynomial-time DP algorithm for projection onto
any tree structure which has a loopless pairwise overlapping
group property. We should point out, however, that wavelet
transforms may not exhibit this property.

II. FURTHER MOTIVATION AND PRELIMINARIES

We frame the discussion in terms of standard D-dimensional
Cartesian-product dyadic wavelets, which have a particular
canonical 2D-ary tree structure. We assume a tree structure
in which each coefficient has a maximum of d children,
where d is the tree order. The Cartesian-product structure
implies that d = 2D, where the transform dimension D
is some fixed positive integer, and so d is a fixed integer
with d ≥ 2. Also, let N = dJ for some J ≥ 2, where
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J is the number of levels in the tree structure. We assign
a numbering {i : 1 ≤ i ≤ N} to the nodes of the tree,
starting with the root node and proceeding from coarse to
fine levels. Let the root node i = 1 be at level 0, and have
d− 1 children at level 1, namely {2, . . . , d}. Let each of the
remaining nodes except those in level J (the finest level), that
is {i : 2 ≤ i ≤ dJ−1 = N/d}, each have d children, namely
{d(i − 1) + 1, . . . , di} respectively. The nodes in the finest
level J , that is {i : i > dJ−1 = N/d}, are assumed to have
no children; see Figure 1.

Fig. 1. An illustration of the canonical dyadic tree structure considered here,
for the case of d = 2 (binary tree) and J = 4.

Following [2], we define a rooted tree of cardinality k to
be some subtree consisting of k nodes of the full tree just
described, subject to the restrictions that it must include the
root node, and that if any node other than the root node is
included then its parent node must also be included. We write
Tk for the set of supports of all rooted trees of cardinality
k. Given a vector y ∈ RN , we are interested in finding the
Euclidean projection Pk(y) of a vector y ∈ RN onto the set
of vectors with support in Tk, namely

Pk(y) = argmin
{z∈RN :supp(z)∈Tk}

‖z − y‖2, (1)

where supp(z) denotes the support of z. Provided the above
numbering scheme is used to distinguish between supports
with precisely the same approximation error, Pk(y) is well-
defined. Intuitively, the following lemma establishes that a tree
projection preserves the values of selected coefficients.

Lemma 1: Let Pk(·) be defined as in (1). Then

{Pk(y)}i :=

{
yi i ∈ Γ
0 i /∈ Γ

where Γ := argmax
Ω∈Tk

‖yΩ‖ .

(2)
Proof: Let supp(z) = Γ ∈ Tk. Then

‖z − y‖2 = ‖(z − y)Γ‖2 + ‖yΓC‖2 ,

and ‖(z − y)Γ‖2 is minimized by setting zi = yi for all i ∈ Γ.
Meanwhile, ‖yΓC‖ is minimized by choosing Γ to be the set
Ω ∈ Tk which maximizes ‖yΩ‖, and the result now follows.�

Lemma 1 implies that tree projection is a decision problem:
since coefficient values are preserved, the projection is ob-
tained by identifying the set Γ ∈ Tk on which y has maximum
energy. It follows that Pk(y) may also be found by solving

the following Integer Program (IP):

max
τ∈ZN

N∑
i=1

y2
i τi subject to

τ ≥ 0
{τi} tree-nonincreasing∑
τi = k

τ1 = 1.

(3)

Here tree-nonincreasing means that the coefficients do not in-
crease along the branches, a condition which may be translated
into a series of linear constraints. Note that the assumption
of integrality, together with the constraints, in fact forces
τi ∈ {0, 1} for each i, so that τ acts as a decision variable.
Denoting the optimal solution of (3) by τ∗, the coefficients of
the best tree approximation are then yiτ∗i .

We can now be more precise about our claim in Section I
that both the CSSA [12] and the CPSS [5] solve relaxations
of the tree projection problem, and hence are only guaranteed
to give approximate tree projections.

The CSSA solves an LP relaxation of (3) in which one
dispenses with the assumption of integrality while retaining
all other constraints. The authors of [12] observe that the two
solutions are sometimes equal, but not always: a value of τi =
1 may be assigned to all but a few coefficients, which are each
assigned a value τ̄ for some 0 < τ̄ < 1. In this case, the result
is a tree of size strictly greater than k. Moreover, there is no
straightforward method for ‘adjusting’ the solution a posteriori
to obtain the optimal k-sparse tree projection.

Meanwhile, the CPSS [5] solves a Lagrangian relaxation
of (3) in which the equality constraint

∑
τi = k is removed

and penalized in the objective instead. This reformulation can
be solved using fine-to-coarse dynamic programming on the
tree [5], [9]. Because (3) is an IP, its Lagrangian relaxation
is also not guaranteed to share the same optimal solution
as (3) [14]. A further drawback of the CPSS is the non-
obvious relationship between the Lagrange multiplier λ and
the required sparsity, which means that the problem must in
practice be solved for multiple values of λ in order to find a
tree approximation for a given sparsity.

III. THE ETP ALGORITHM

Our algorithm (Algorithm 1) falls into the broad category
of dynamic programming (DP) algorithms which optimize on
directed graphs by utilizing a principle of optimality, namely
that optimal solutions at a given node may be determined
entirely from optimal solutions at ‘preceding’ nodes [15]. Our
algorithm makes two passes through the tree: firstly, a fine-to-
coarse pass finds optimal subtrees at each node for all k̃ ≤ k.
Secondly, a coarse-to-fine pass tracks back to identify the
optimal solution.

The algorithm starts at the finest level and moves up the tree,
finding optimal subtrees rooted at each node, each decision
requiring only the information already obtained within that
particular subtree. Following [4], optimal subtrees for a given
node are obtained by successively incorporating each of its
children, and repeatedly optimizing over all known solutions.
To maximize efficiency, optimal subtrees are in fact only found
for all cardinalities which could possibly contribute to a rooted
tree of cardinality k, which imposes two restrictions. Firstly,
by summing the appropriate geometric series, the maximum
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cardinality of a subtree rooted at a node in level j is dJ+1−j−1
d−1 .

Secondly, any subtree rooted at a node in level j of cardinality
greater than k−j would necessarily contribute to a rooted tree
of cardinality greater than k. Defining

l(j) := min

(
dJ+1−j − 1

d− 1
, k − j

)
1 ≤ j ≤ J, (4)

we therefore need only find optimal subtrees for cardinalities
up to l(j) for nodes at level j. Further restrictions are imposed
due to the fact that children are incorporated sequentially.
F (i, l) denotes the total energy of the optimal subtree

rooted at node i, of size l, and G(i, l) = [Gr(i, l) : r =
1, . . . , d] ∈ Rd is a vector of nonnegative integers, giving the
number of nodes contributing to this optimal solution from
the subtree rooted at each of the children of node i. We
then proceed recursively and eventually determine F (1, k),
the energy of the optimal tree of size k.1 Finally, we use
the precedence information to trace the optimal solution back
along the branches. The algorithm actually does more than is
asked for: by the time the root node is reached at the end of the
first pass, enough information has been obtained to determine
optimal trees for all k̃ ≤ k.

ETP is closely related, but not identical, to the optimal
tree pruning algorithm in [4], where the decision tree context
motivates the solution of a slightly different problem from
the present tree projection problem. In their setup, if a node
is pruned, then so are all other nodes sharing the same parent
in the tree structure. Also, an optimal pruning is obtained for
a given number of leaves (ends of branches of the tree), as
opposed to the cardinality of the tree approximant. There is
also a difference in how information is stored: the proposal
in [4] is to store the full optimal subtrees themselves at each
node, essentially incorporating the backtracking phase into
the first pass of the algorithm.

Algorithm 1. Exact tree projection (ETP).

Inputs:

 d ∈ N (d ≥ 2)
y ∈ RN (N = dJ ; J ≥ 2)
k ∈ N (2 ≤ k ≤ N)

Find all optimal subtrees:
for i = (dJ−1 + 1) : dJ do
F (i, 0) = 0 and F (i, 1) = y2

i

end for
for j = (J − 1) : −1 : 1 do

for i = (dj−1 + 1) : dj do
F (i, 0) = 0 and F (i, 1) = y2

i

G(i, 0) = 0 and G(i, 1) = 0
for r = 1 : d do

for l = 2 : min[l(j), rl(j + 1) + 1] do
s− = max{1, l − [(r − 1)l(j + 1) + 1]}
s+ = min[l − 1, l(j + 1)]
ŝ = argmax

s−≤s≤s+
{F [d(i− 1) + r, s] + F (i, l − s)}

F̃ (i, l) = F [d(i− 1) + r, ŝ] + F (i, l − ŝ)
G̃(i, l) = G(i, l − ŝ), G̃r(i, l) = ŝ

end for
1We also need to define two temporary variables F̃ and G̃ which represent

updates to F and G during the incorporation of a child.

for l = 2 : min[l(j), rl(j + 1) + 1] do
F (i, l) = F̃ (i, l) and G(i, l) = G̃(i, l)

end for
end for

end for
end for
for r = 2 : d do

for l = 2 : min[k, (r − 1)l(1) + 1] do
s− = max{1, l − [(r − 2)l(1) + 1]}
s+ = min[l − 1, l(1)]
ŝ = argmax

s−≤s≤s+
[F (r, s) + F (1, l − s)]

F̃ (1, l) = F (r, ŝ) + F (1, l − ŝ)
G̃(1, l) = G(1, l − ŝ), G̃r(1, l) = ŝ

end for
for l = 2 : min[k, (r − 1)l(1) + 1] do
F (1, l) = F̃ (1, l) and G(1, l) = G̃(1, l)

end for
end for

Backtrack to identify solution:
τ = 0, τ1 = 1, Γ1 = k
for j = 0 : (J − 1) do

for i = max[2, (dj−1 + 1)] : dj do
if τi = 1 then

for r = max(1, 2− j) : d do
if Gr(i,Γi) > 0 then
τd(i−1)+r = 1
Γd(i−1)+r = Gr(i,Γi)

end if
end for

end if
end for

end for
Calculate solution:

for i = 1 : N do
ŷi = yiτi

end for
Output: ŷ ∈ RN

IV. COMPLEXITY ANALYSIS

To establish the complexity of ETP, we note that the domi-
nating operations are additions and comparisons, and therefore
it suffices to bound the total number of these operations.

Theorem 2: Given y ∈ RN , the ETP algorithm requires at
most (3d2Nk+N) additions/comparisons to calculate Pk(y),
defined in (1).

Proof: Consider the first pass of ETP. In each level j
with 1 ≤ j ≤ J − 1, there are (d − 1) · dj−1 nodes.
For a given node i at level j, each of its d children are
incorporated successively. Each time a child is incorporated,
we calculate optimal subtrees for each l such that 2 ≤ l ≤
lmax. Each of these calculations requires at most (l − 1)
additions, each one accompanied by a comparison, and we
have lmax ≤ l(j), where l(j) is defined in (4). The number
of additions/comparisons needed to incorporate a child is
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therefore bounded by

2

l(j)∑
l=2

(l − 1) ≤ l(j)[l(j)− 1] ≤ [l(j)]2. (5)

Combining all these observations, and writing C for the total
number of additions/comparisons in the first pass of the
algorithm for levels 1 ≤ j ≤ J − 1 (i.e. excluding the root
node), we have

C ≤
J−1∑
j=1

{
(d− 1)dj−1 · d · [l(j)]2

}
, (6)

To bound l(j), observe from (4) that

l(j) ≤ min(dJ+1−j , k). (7)

To determine which of dJ+1−j or k gives a tighter bound, let
1 ≤ p ≤ J − 1 be the unique positive integer such that

dp−1 ≤ k ≤ dp. (8)

First let us assume p > 2. We have

k ≤ dJ+1−j ⇐⇒ dp ≤ dJ+1−j ⇐⇒ j ≤ J + 1− p,

which we may combine with (6) and (7) to deduce

C ≤
J+1−p∑
j=1

(d− 1)dj ·k2 +

J−1∑
j=J+2−p

(d− 1)dj ·d2(J+1−j) (9)

= (d− 1)

dk2

J+1−p∑
j=1

dj−1 +

J−1∑
j=J+2−p

d2J+2−j


= (d− 1)

{
dk2

(
dJ+1−p − 1

d− 1

)
+ dJ+p

[
1−

(
1
d

)p−2

1− 1
d

]}
.

(10)
Since

(d− 1)

[
1−

(
1
d

)p−2

1−
(

1
d

) ]
≤
(
d− 1

1− 1
d

)
= d,

and since dJ+1−p− 1 ≤ dJ+1−p, we can further deduce from
(10) that

C ≤ k2 · dJ+2−p + dJ+1+p,

to which we can make the substitution N = dJ and apply the
bounds (8), concluding that

C ≤ k2 · d
2N

k
+ d2Nk = 2d2Nk. (11)

On the other hand, if p ≤ 2, then k ≤ d2 ≤ dJ+1−j for all j ≤
J − 1, and so the second summation in (9) is empty. We may
then follow the same argument to bound the first summation,
obtaining C ≤ 2d2Nk in this case also. Meanwhile, the root
node has (d − 1) children, which may be combined with (5)
and (7) to deduce that the number of additions/comparisons
for the root node is bounded by

(d− 1)k2 ≤ d2Nk. (12)

Finally, note that the second pass involves no additions and at
most N comparisons, which combines with (11) and (12) to
yield the result. �

It follows from Theorem 2 that ETP has complexity
O(Nk).2 We may compare the complexity of ETP with that
of the other approximate tree projection methods discussed in
Section II: GTA [7] and the CSSA [12] are both O(N logN)
while the CPSS [5] is O(N). Provided logN � k, we can see
that the price we pay for guaranteeing an exact tree projection
is an increased order of complexity.

The algorithm is easy to implement and we have ex-
perimented with random tests successfully; its cost is not
disappointing compared to approximate methods such as the
CSSA and the CPSS.3

V. CONCLUSION

We have presented an algorithm for exact tree projection
in the context of wavelets and have proved that it has O(Nk)
worst-case complexity. The DP algorithm described here could
also be applied to any tree-based signal representations. Ap-
proximate algorithms may still offer an advantage in terms
of computational efficiency, and therefore the practitioner’s
choice of tree projection algorithm will depend upon whether
guaranteed precision or algorithm running time is the overrid-
ing priority.
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