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Abstract

Given a multivariate data set, sparse principal component analysis (SPCA) aims to extract
several linear combinations of the variables that together explain the variance in the data as much
as possible, while controlling the number of nonzero loadings in these combinations. In this paper
we consider 8 different optimization formulations for computing a single sparse loading vector;
these are obtained by combining the following factors: we employ two norms for measuring
variance (L2, L1) and two sparsity-inducing norms (L0, L1), which are used in two different
ways (constraint, penalty). Three of our formulations, notably the one with L0 constraint and
L1 variance, have not been considered in the literature. We give a unifying reformulation which
we propose to solve via a natural alternating maximization (AM) method. We show the the AM
method is nontrivially equivalent to GPower (Journée et al; JMLR 11:517–553, 2010) for all
our formulations. Besides this, we provide 24 efficient parallel SPCA implementations: 3 codes
(multi-core, GPU and cluster) for each of the 8 problems. Parallelism in the methods is aimed
at i) speeding up computations (our GPU code can be 100 times faster than an efficient serial
code written in C++), ii) obtaining solutions explaining more variance and iii) dealing with big
data problems (our cluster code is able to solve a 357 GB problem in about a minute).

Keywords: sparse principal component analysis, alternating maximization, GPower, high
performance computing, big data analytics, unsupervised learning.

1 Introduction

Principal component analysis (PCA) is an indispensable tool used for dimension reduction in vir-
tually all areas of science and engineering, from machine learning, statistics, genetics and finance
to computer networks [1]. Let A ∈ Rn×p denote a data matrix encoding n samples (observations)
of p variables (features). PCA aims to extract a few linear combinations of the columns of A, called
principal components (PCs), pointing in mutually orthogonal directions, together explaining as
much variance in the data as possible. If the columns of A are centered, the problem of extracting
the first PC can be written as

max{‖Ax‖ : ‖x‖2 ≤ 1}, (1.1)
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where ‖ · ‖ is a suitable norm for measuring variance. The solution x of this optimization problem
is called the loading vector, Ax (normalized) is the first PC. Further PCs can be obtained in the
same way with A replaced by a new matrix in a process called deflation [2]. Classical PCA employs
the L2 norm in the objective; using the L1 norm instead may alleviate problems caused by outliers
in the data and hence leads to a robust PCA model [3].

As normally there is no reason for the optimal loading vectors defining the PCs to be sparse,
they are usually combinations of all of the variables. In some applications, however, sparse loading
vectors enhance the interpretability of the components and are easier to store, which leads to the
idea to induce sparsity in the loading vectors. This problem and approaches to it are known collec-
tively as sparse PCA (SPCA); for some recent work, see [4]-[11]. A popular way of incorporating
a sparsity-inducing mechanism into the above optimization formulation is via either a sparsity-
inducing constraint or penalty. Two of the most popular functions for this are the L0 and L1 norm
of the loading vector x (the L0 “norm” of x, denoted by ‖x‖0, is the number of nonzeros in x).

1.1 Eight optimization formulations

In this paper we consider 8 optimization formulations for extracting a single sparse loading vector
(i.e., for computing the first PC) arising as combinations of the following three modeling factors:
we use two norms for measuring variance (classical L2 and robust L1) and two sparsity-inducing
(SI) norms (cardinality L0 and L1), which are used in two different ways (as a constraint or a
penalty). All have the form

OPT = max
x∈X

f(x), (1.2)

with X ⊂ Rp and f detailed in Table 1. Note that if we set s = p in the constrained or γ = 0 in
the penalized versions, the sparsity-inducing functions stop having any effect1 and we recover the
classical and robust PCA (1.1). Choosing 1 ≤ s < p, γ > 0 will have the effect of directly enforcing
or indirectly encouraging sparsity in the solution x.

# Variance SI norm SI norm usage X f(x)

1 L2 L0 constraint {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖0 ≤ s} ‖Ax‖2
2 L1 L0 constraint {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖0 ≤ s} ‖Ax‖1
3 L2 L1 constraint {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖1 ≤ √

s} ‖Ax‖2

4 L1 L1 constraint {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖1 ≤ √
s} ‖Ax‖1

5 L2 L0 penalty {x ∈ Rp : ‖x‖2 ≤ 1} ‖Ax‖22 − γ‖x‖0
6 L1 L0 penalty {x ∈ Rp : ‖x‖2 ≤ 1} ‖Ax‖21 − γ‖x‖0
7 L2 L1 penalty {x ∈ Rp : ‖x‖2 ≤ 1} ‖Ax‖2 − γ‖x‖1
8 L1 L1 penalty {x ∈ Rp : ‖x‖2 ≤ 1} ‖Ax‖1 − γ‖x‖1

Table 1: Eight sparse PCA optimization formulations; see 1.2.

All 4 SPCA formulations of Table 1 involving L2 variance were previously studied in the litera-
ture and are very popular. For instance, [6] solve a series of convex relaxations of the L0 constrained

1In the L1 penalized formulations this can be seen from the inequality ‖x‖1 ≤
√

‖x‖0‖x‖2.
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L2 variance problem, [7] considered the L0 penalized and constrained formulations, [9] studied the
L0 and L1 penalized versions, [10] looked at all four. The L1 constrained L1 variance formulation
was first proposed only recently, in [11]. To the best of our knowledge, the remaining three L1 vari-
ance formulations were not considered in the literature before. In particular, the L0 constrained
L1 variance formulation is new—and is perhaps preferable as it directly constraints the cardinality
of the loading vector x without using any proxies.

1.2 Reformulation and alternating maximization (AM) method

In all 8 formulations we introduce an additional (dummy) variable y, which allows us to propose
a generic alternating maximization method for solving them: i) for a fixed loading vector, find the
best dummy variable (one maximizing the objective), then ii) fix the dummy variable and find the
best loading vector; repeat steps i) and ii). This and the resulting algorithms are described in
detail in Section 2. The generic AM method is not limited to our choice of SPCA formulations.
Indeed, it is applicable, for instance, if instead of measuring the variance using either the L1 or
the L2 norm, we use any other norm. One critical feature shared by the formulations in Table 1 is
that steps i) and ii) of the AM method can be performed efficiently, in closed form, with the main
computational burden in each step being a matrix-vector multiplication (Ax in step i) and AT y
in step ii)). Our method produces a sequence of loading vectors x(k), k ≥ 0, with monotonically
increasing values f(x(k)).

Our approach of introducing a dummy variable and using AM is similar to that of [9], where it
is done implicitly, but mainly to [12], where it is fully explicit, albeit used for different purposes.

Besides providing a conceptual unification for solving all 8 formulations using a single algorithm
(AM), the main theoretical result of this paper is establishing that, surprisingly, in all 8 cases, the
AM method is equivalent to the GPower method [9] applied to a certain derived objective function,
with iterates being either the loading vectors or the dummy variables, depending on the formulation.
This result is stated and proved in Section 3.

1.3 Parallelism

Besides giving a new unifying framework and a generic algorithm for solving a number of SPCA
formulations, 5 of which were previously proposed in the literature and 3 not, our further contribu-
tion is in providing efficient strategies for parallelizing AM at two different levels: i) running AM
in parallel from multiple starting points in order to obtain a solution explaining more variance and
ii) speeding up the linear algebra involved. This is described in detail in Section 4.

Moreover, we provide parallel open-source codes implementing these parallelization strategies,
for each of our 8 formulations, on 3 computing architectures: i) multi-core machine, ii) GPU-enabled

computer, and iii) computer cluster. We also provide a serial code; however, as nearly all modern
computers are multi-core, the serial implementation only serves the purpose of a benchmark against
which once can measure parallelization speedup. Hence, we provide a total of 8 × 3 = 24 parallel
sparse PCA codes based on AM. Numerical experiments with our multi-core, GPU and cluster
codes are performed in Section 5.

Parallelism in our codes serves several purposes:

1. Speeding up computations. As described above, the AM method computes a matrix-vector
multiplication at every iteration; this can be parallelized. We find that our GPU implementa-
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tions are faster than our multi-core implementations, which are, in turn, considerably faster
than the benchmark single-core codes.

2. Obtaining solutions explaining more variance. In some applications, such as in the computa-
tion of RIP constants for compressed sensing [13], it is critical that a PC is computed with as
high explained variance as possible. The output of our 8 subroutines depends on the starting
point used; it only finds local solutions. Running them repeatedly from different starting
points and keeping the solution with the largest objective value results in a PC explaining
more variance. There are several ways in which this can be done, we implement 4 (NAI =
“naive”, SFA = “start-from-all”, BAT = “batches” and OTF = “on-the-fly”); details are
given in Section 4. A naive (NAI) approach is to do this sequentially; a different possibility
is to run the method from several or all starting points in parallel (BAT, SFA), possibly
asynchronously (OTF). This way at each iteration we need to perform a matrix-matrix mul-
tiplication which, when computed in parallel, is performed significantly faster compared to
doing the corresponding number of parallel matrix-vector multiplications, one after another.

3. Dealing with big data problems. If speed matters, for problems of small enough size we
recommend using a GPU, if available. Since GPUs have stricter memory limitations than
multi-core workstations (a typical GPU has 6GB RAM, a multi-core machine could have
20GB RAM), one may need to use a high-memory multi-core workstation if the problem size
exceeds the GPU limit. However, for large enough (=big data) problems, one will need to
use a cluster. Our cluster codes partition A, store parts of it on different nodes, and do the
computations in a distributed way.

Notation. By x and y we denote column vectors in Rp and Rn, respectively. The coordinates
of a vector are denoted by subscripts (eg., x1, x2, . . . ) while iterates are denoted by superscripts in
brackets (eg., x(0), x(1), . . . ). We reserve the letter k for the iteration counter. By ‖x‖0 we refer
to the cardinality (number of nonzero loadings) of vector x. The L1, L2 and L∞ norms are defined
by ‖z‖1 =

∑

i |zi|, ‖z‖2 = (
∑

i z
2
i )

1/2 and ‖z‖∞ = maxi |zi|, respectively. For a scalar t, we let
[t]+ = max{0, t} and by sgn(t) we denote the sign of t.

2 Alternating Maximization (AM) Method

As outlined in the previous section, we will solve (1.2) by introducing a dummy variable y into each
of the 8 formulations and apply an AM method to the reformulation. First, notice that for any
pair of conjugate norms ‖ · ‖ and ‖ · ‖∗, we have, by definition,

‖z‖ = max
‖y‖∗≤1

yT z. (2.3)

In particular, ‖ · ‖∗2 = ‖ · ‖2 and ‖ · ‖∗1 = ‖ · ‖∞.
Now, let Y := {y ∈ Rn : ‖y‖2 ≤ 1} for the L2 variance formulations and Y := {y ∈ Rn :

‖y‖∞ ≤ 1} for the L1 variance formulations. Further, let F (x, y) be the function obtained from
f(x) after replacing ‖Ax‖ with yTAx (resp. ‖Ax‖2 with (yTAx)2). Then, in view of the above,
(1.2) takes on the equivalent form

OPT = max
x∈X

max
y∈Y

F (x, y). (2.4)
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That is, the 8 problems from Table 1 can be reformulated into the form (2.4); the details can be
found in Table 2.

# X Y F (x, y)

1 {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖0 ≤ s} {y ∈ Rn : ‖y‖2 ≤ 1} yTAx

2 {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖0 ≤ s} {y ∈ Rn : ‖y‖∞ ≤ 1} yTAx

3 {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖1 ≤ √
s} {y ∈ Rn : ‖y‖2 ≤ 1} yTAx

4 {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖1 ≤ √
s} {y ∈ Rn : ‖y‖∞ ≤ 1} yTAx

5 {x ∈ Rp : ‖x‖2 ≤ 1} {y ∈ Rn : ‖y‖2 ≤ 1} (yTAx)2 − γ‖x‖0
6 {x ∈ Rp : ‖x‖2 ≤ 1} {y ∈ Rn : ‖y‖∞ ≤ 1} (yTAx)2 − γ‖x‖0
7 {x ∈ Rp : ‖x‖2 ≤ 1} {y ∈ Rn : ‖y‖2 ≤ 1} yTAx− γ‖x‖1
8 {x ∈ Rp : ‖x‖2 ≤ 1} {y ∈ Rn : ‖y‖∞ ≤ 1} yTAx− γ‖x‖1

Table 2: Reformulations of the problems from Table 1.

We propose to solve (2.4) via Algorithm 1.

Algorithm 1 Alternating Maximization (AM) Method.

Select initial point x(0) ∈ Rp; k ← 0
Repeat

y(k) ← y(x(k)) := argmaxy∈Y F (x(k), y)
x(k+1) ← x(y(k)) := argmaxx∈X F (x, y(k))

Until a stopping criterion is satisfied

2.1 Solving the subproblems

All 8 problems of Table 2 enjoy the property that both of the steps (subproblems) of Algorithm 1
can be computed in closed form. In particular, each of these 8 × 2 subproblems is of one of the 6
forms listed in Table 3.

The proofs of these elementary results, many of which are of folklore nature, can be found, for
instance, in [10] (and partially in [9]). The columns of Table 3, from left to right, correspond to the
objective function, feasible region, maximizer (optimal solution) and maximum (optimal objective
value). The first result will be used both with z = x and z = y, the second result with z = y and
the remaining four results with z = x.

Table 3 is brief at the cost of referring to a number of operators (Ts, Uγ , Vγ : Rm 7→ Rm and
λs : R

m 7→ R), which we will now define. For a given vector a ∈ Rm and integer s ∈ {0, 1, . . . ,m},
by Ts(a) ∈ Rm we denote the vector obtained from a by retaining only the s largest components of
a in absolute value, with the remaining ones replaced by zero. For instance, for a = (1,−4, 2, 5, 3)T
and s = 2 we have Ts(a) = (0,−4, 0, 5, 0)T . For γ ≥ 0, we define operators Uγ and Vγ element-wise
for i = 1, . . . ,m as follows:

(Uγ(a))i := ai[sgn(a
2
i − γ)]+, (2.5)
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Subproblem # φ(z) Z z∗ φ(z∗)

S1 aT z or (aT z)2 ‖z‖2 ≤ 1 a
‖a‖2

‖a‖2
S2 aT z ‖z‖∞ ≤ 1 sgn(a) ‖a‖1
S3 aT z ‖z‖2 ≤ 1, ‖z‖0 ≤ s

Ts(a)
‖Ts(a)‖2

‖Ts(a)‖2

S4 aT z ‖z‖2 ≤ 1, ‖z‖1 ≤ √
s

Vλs(a)(a)

‖Vλs(a)(a)‖2
λs(a)

√
s+ ‖Vλs(a)(a)‖2

S5 (aT z)2 − γ‖z‖0 ‖z‖2 ≤ 1
Uγ(a)

‖Uγ(a)‖2
‖Uγ(a)‖22 − γ‖Uγ(a)‖0

S6 aT z − γ‖z‖1 ‖z‖2 ≤ 1
Vγ (a)

‖Vγ (a)‖2
‖Vγ(a)‖2

Table 3: Closed-form solutions of AM subproblems; z∗ := argmaxz∈Z φ(z).

(Vγ(a))i := sgn(ai)(|ai| − γ)+. (2.6)

Furthermore, we let
λs(a) := argmin

λ≥0
λ
√
s+ ‖Vλ(a)‖2,

which is the solution of the one-dimensional dual of the optimization problem in line 4 of Table 3.

2.2 The AM method for all 8 SPCA formulations

Combining Algorithm 1 with the subproblem solutions given in Table 3, the AM method for all
our 8 SPCA formulations can be written down concisely; see Algorithm 2.

Algorithm 2 AM method for solving the 8 SPCA formulations of Table 2.

Select initial point x(0) ∈ Rp; k ← 0
Repeat

u = Ax(k)

If L1 variance then y(k) ← sgn(u)
If L2 variance then y(k) ← u/‖u‖2

v = AT y(k)

If L0 penalty then x(k+1) ← Uγ(v)/‖Uγ(v)‖2
If L1 penalty then x(k+1) ← Vγ(v)/‖Vγ(v)‖2
If L0 constraint then x(k+1) ← Ts(v)/‖Ts(v)‖2
If L1 constraint then x(k+1) ← Vλs(v)(v)/‖Vλs(v)(v)‖2

k ← k + 1
Until a stopping criterion is satisfied

Note that in the methods described in Algorithm 2 it is not necessary to normalize the vector
Uγ(v) (resp. Vγ(v), Ts(v), and Vλs(a)(v)) when computing x(k+1) since clearly the iterate y(k+1),

which depends on x(k+1), is invariant under positive scalings of x(k+1). We have to remember,
however, to normalize the output. The method is terminated when a maximum number of iterations
maxIt is reached or when

F (x(k+1), y(k))

F (x(k), y(k−1))
≤ 1 + tol,
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whichever happens sooner.

3 Equivalence of AM and GPower

GPower (generalized power method) [9] is a simple algorithm for maximizing a convex function Ψ
on a compact set Ω, which works via a “linearize and maximize” strategy. If by Ψ′(z(k)) we denote
an arbitrary subgradient of Ψ at z(k), then GPower performs the following iteration:

z(k+1) = argmax
z∈Ω
{Ψ(z(k)) + 〈Ψ′(z(k)), z − z(k)〉} = argmax

z∈Ω
〈Ψ′(z(k)), z〉. (3.7)

The following theorem, our main result, gives a nontrivial insight into the relationship of AM
and GPower, when the former is applied to solving any of the 8 SPCA formulations considered,
and GPower is applied to a derived problem, as described by the theorem.

Theorem 1 (AM = GPower). The AM and GPower methods are equivalent in the following sense:

1. For the 4 constrained sparse PCA formulations of Table 1, the x iterates of the AM method ap-

plied to the corresponding reformulation of Table 2 are identical to the iterates of the GPower

method as applied to the problem of maximizing the convex function

FY (x)
def
= max

y∈Y
F (x, y)

on X, started from x(0).

2. For the 4 penalized sparse PCA formulations of Table 1, the y iterates of the AM method ap-

plied to the corresponding reformulation of Table 2 are identical to the iterates of the GPower

method as applied to the problem of maximizing the convex function

FX(y)
def
= max

x∈X
F (x, y)

on Y , started from y(0).

Proof. Recall that we wish to solve the problem

OPT = max
x∈X

f(x) = max
x∈X

max
y∈Y

F (x, y)

︸ ︷︷ ︸

FY (x)

= max
y∈Y

max
x∈X

F (x, y)
︸ ︷︷ ︸

FX(y)

.

We will now prove the equivalence for all 8 choices of (f,X, Y, F ) given in Tables 1 and 2. In the
proofs we will also refer to the closed form solutions of the subproblem (S1)–(S6), as detailed in
Table 3.

Consider first the constrained formulations: 1, 2, 3 and 4. By induction assume that the k-th
x-iterate (x(k)) of AM is identical to the k-th iterate of GPower (for k = 0 this is enforced by the
assumption that GPower is started from x(0)). By considering all 4 formulations individually, we
will show that x(k+1) produced by AM and GPower are also identical.
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Formulation 1 : Here we have

f(x) = ‖Ax‖2, F (x, y) = yTAx,

X = {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖0 ≤ s}, Y = {y ∈ Rn : ‖y‖2 ≤ 1}.

First, note that

FY (x) = max
y∈Y

F (x, y)
(S1)
= ‖Ax‖2,

the gradient of which is given by

F ′
Y (x) =

ATAx

‖Ax‖2
. (3.8)

Given x(k), in the AM method we have

y(k) = argmax
y∈Y

F (x(k), y)
(S1)
=

Ax(k)

‖Ax(k)‖2
. (3.9)

One iteration of GPower started from x(k) will thus produce the iterate

x(k+1) (3.7)
= argmax

x∈X
〈F ′

Y (x
(k)), x〉 (3.8)

= argmax
x∈X

〈

ATAx(k)

‖Ax(k)‖2
, x

〉

(3.9)
= argmax

x∈X
〈AT y(k), x〉

(S3)
=

Ts(A
T y(k))

‖Ts(AT y(k))‖2
.

Observe that this is precisely how x(k+1) is computed in the AM method.

Formulation 2 : Here we have

f(x) = ‖Ax‖1, F (x, y) = yTAx,

X = {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖0 ≤ s}, Y = {y ∈ Rn : ‖y‖∞ ≤ 1}.

First, note that

FY (x) = max
y∈Y

F (x, y)
(S2)
= ‖Ax‖1,

the gradient of which is given by

F ′
Y (x) = AT sgn(Ax). (3.10)

Given x(k), in the AM method we have

y(k) = argmax
y∈Y

F (x(k), y)
(S2)
= sgn(Ax(k)). (3.11)
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One iteration of GPower started from x(k) will thus produce the iterate

x(k+1) (3.7)
= argmax

x∈X
〈F ′

Y (x
(k)), x〉 (3.10)

= argmax
x∈X

〈

AT sgn(Ax(k)), x
〉

(3.11)
= argmax

x∈X
〈AT y(k), x〉

(S3)
=

Ts(A
T y(k))

‖Ts(AT y(k))‖2
.

Observe that this is precisely how x(k+1) is computed in the AM method.

Formulation 3 : Here we have

f(x) = ‖Ax‖2, F (x, y) = yTAx,

X = {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖1 ≤
√
s}, Y = {y ∈ Rn : ‖y‖2 ≤ 1}.

First, note that

FY (x) = max
y∈Y

F (x, y)
(S1)
= ‖Ax‖2,

the gradient of which is given by

F ′
Y (x) =

ATAx

‖Ax‖2
. (3.12)

Given x(k), in the AM method we have

y(k) = argmax
y∈Y

F (x(k), y)
(S1)
=

Ax(k)

‖Ax(k)‖2
. (3.13)

One iteration of GPower started from x(k) will thus produce the iterate

x(k+1) (3.7)
= argmax

x∈X
〈F ′

Y (x
(k)), x〉 (3.14)

= argmax
x∈X

〈

ATAx(k)

‖Ax(k)‖2
, x

〉

(3.15)
= argmax

x∈X
〈AT y(k), x〉

(S4)
=

Vλs(AT y(k))(A
T y(k))

‖Vλs(AT y(k))(A
T y(k))‖2

.

Observe that this is precisely how x(k+1) is computed in the AM method.

Formulation 4 : Here we have

f(x) = ‖Ax‖1, F (x, y) = yTAx,

X = {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖1 ≤
√
s}, Y = {y ∈ Rn : ‖y‖∞ ≤ 1}.
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First, note that

FY (x) = max
y∈Y

F (x, y)
(S1)
= ‖Ax‖1,

the gradient of which is given by

F ′
Y (x) =

ATAx

‖Ax‖2
. (3.14)

Given x(k), in the AM method we have

y(k) = argmax
y∈Y

F (x(k), y)
(S1)
=

Ax(k)

‖Ax(k)‖2
. (3.15)

One iteration of GPower started from x(k) will thus produce the iterate

x(k+1) (3.7)
= argmax

x∈X
〈F ′

Y (x
(k)), x〉 (3.14)

= argmax
x∈X

〈

ATAx(k)

‖Ax(k)‖2
, x

〉

(3.15)
= argmax

x∈X
〈AT y(k), x〉

(S4)
=

Vλs(AT y(k))(A
T y(k))

‖Vλs(AT y(k))(A
T y(k))‖2

.

Observe that this is precisely how x(k+1) is computed in the AM method.

Consider now the penalized formulations: 5, 6, 7 and 8. By induction assume that the k-th
y-iterate (y(k)) of AM is identical to the k-th iterate of GPower (for k = 0 this is enforced by the
assumption that GPower is started from y(0)). By considering all 4 formulations individually, we
will show that y(k+1) produced by AM and GPower are also identical. Let A = [a1, . . . , ap], i.e.,
the i-th column of A is ai.

Formulation 5 : Here we have

f(x) = ‖Ax‖22 − γ‖x‖0, F (x, y) = (yTAx)2 − γ‖x‖0,

X = {x ∈ Rp : ‖x‖2 ≤ 1}, Y = {y ∈ Rn : ‖y‖2 ≤ 1}.

First, note that

FX(y) = max
x∈X

F (x, y)
(S5)
= ‖Uγ(A

T y)‖22 − γ‖Uγ(A
T y)‖0 =

p
∑

i=1

[(aTi y)
2 − γ]+,

the subgradient of which is given by

F ′
X(y) = 2

p
∑

i=1

[sgn((aTi y)− γ)]+(a
T
i y)ai

(2.5)
= 2AUγ(A

T y). (3.16)
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Given y(k), in the AM method we have

x(k+1) = argmax
x∈X

F (x, y(k))
(S5)
=

Uγ(A
T y(k))

‖Uγ(AT y(k))‖2
. (3.17)

One iteration of GPower started from y(k) will thus produce the iterate

y(k+1) (3.7)
= argmax

y∈Y
〈F ′

X(y(k)), y〉 (3.16)
= arg max

‖y‖∞≤1
〈2AUγ(A

T y), y〉

(3.17)
= arg max

‖y‖2≤1
〈Ax(k+1), y〉

(S1)
=

Ax(k+1)

‖Ax(k+1)‖2
.

Observe that this is precisely how y(k+1) is computed in the AM method.

Formulation 6 : Here we have

f(x) = ‖Ax‖21 − γ‖x‖0, F (x, y) = (yTAx)2 − γ‖x‖0,

X = {x ∈ Rp : ‖x‖2 ≤ 1}, Y = {y ∈ Rn : ‖y‖∞ ≤ 1}.

First, note that

FX(y) = max
x∈X

F (x, y)
(S5)
= ‖Uγ(A

T y)‖22 − γ‖Uγ(A
T y)‖0 =

p
∑

i=1

[(aTi y)
2 − γ]+,

the subgradient of which is given by

F ′
X(y) = 2

p
∑

i=1

[sgn((aTi y)− γ)]+(a
T
i y)ai

(2.5)
= 2AUγ(A

T y). (3.18)

Given y(k), in the AM method we have

x(k+1) = argmax
x∈X

F (x, y(k))
(S5)
=

Uγ(A
T y(k))

‖Uγ(AT y(k))‖2
. (3.19)

One iteration of GPower started from y(k) will thus produce the iterate

y(k+1) (3.7)
= argmax

y∈Y
〈F ′

X(y(k)), y〉 (3.18)
= arg max

‖y‖∞≤1
〈2AUγ(A

T y), y〉

(3.19)
= arg max

‖y‖∞≤1
〈Ax(k+1), y〉

(S2)
= sgn(Ax(k+1)).

Observe that this is precisely how y(k+1) is computed in the AM method.
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Formulation 7 : Here we have

f(x) = ‖Ax‖2 − γ‖x‖1, F (x, y) = yTAx− γ‖x‖1,

X = {x ∈ Rp : ‖x‖2 ≤ 1}, Y = {y ∈ Rn : ‖y‖2 ≤ 1}.

Note that the functions y 7→ F (x, y) are linear and that, by definition, FX(y) = maxx∈X F (x, y).
Moreover, note that the gradient of y 7→ F (x, y) at y is equal to Ax. Hence, if x is any vector
that maximizes F (x, y(k)) over X, then Ax is a subgradient of FX at y(k). Note that this is
precisely how x(k+1) is defined in the AM method: x(k+1) = argmaxx∈X F (x, y(k)). Hence,
Ax(k+1) is a subgradient of FX at y(k) and one iteration of GPower started from y(k) will
produce the iterate

y(k+1) (3.7)
= argmax

y∈Y
〈F ′

X(y(k)), y〉 = arg max
‖y‖2≤1

〈Ax(k+1), y〉 (S1)=
Ax(k+1)

‖Ax(k+1)‖2
.

Observe that this is precisely how y(k+1) is computed in the AM method.

Formulation 8 : Here we have

f(x) = ‖Ax‖1 − γ‖x‖1, F (x, y) = yTAx− γ‖x‖1,

X = {x ∈ Rp : ‖x‖2 ≤ 1}, Y = {y ∈ Rn : ‖y‖∞ ≤ 1}.

Note that the functions y 7→ F (x, y) are linear and that, by definition, FX(y) = maxx∈X F (x, y).
Moreover, note that the gradient of y 7→ F (x, y) at y is equal to Ax. Hence, if x is any vector
that maximizes F (x, y(k)) over X, then Ax is a subgradient of FX at y(k). Note that this is
precisely how x(k+1) is defined in the AM method: x(k+1) = argmaxx∈X F (x, y(k)). Hence,
Ax(k+1) is a subgradient of FX at y(k) and one iteration of GPower started from y(k) will
produce the iterate

y(k+1) (3.7)
= argmax

y∈Y
〈F ′

X (y(k)), y〉 = arg max
‖y‖∞≤1

〈Ax(k+1), y〉 (S2)= sgn(Ax(k+1)).

Observe that this is precisely how y(k+1) is computed in the AM method.

Having established equivalence between AM and GPower, local convergence of the AM method
for all 8 SPCA formulations follows from the theory developed in [9] and [10].

4 Embedding AM within a Parallel Scheme

In this section we describe several approaches for embedding Algorithm 2 (AM) within a par-
allel scheme for solving l identical SPCA problems, started from a number of starting points,
x(0,1), . . . , x(0,l). This is done in order to obtain a loading vector explaining more variance and will
be discussed in more detail in Section 4.1.

As we will see, it may not necessarily be most efficient to solve all l problems simultaneously.
Instead, we consider a class of parallelization schemes where we divide the l problems into “batches”
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of r problems each, and solve each batch of r problems simultaneously. In this setting at each it-
eration we need to perform identical operations in parallel, notably matrix-vector multiplications
Ax(k,1), . . . , Ax(k,r) and AT y(k,1), . . . , AT y(k,r). It is useful to view the sequence of matrix-vector
products as a single matrix-matrix product, e.g., A[x(k,1), . . . , x(k,r)] in the first case, and use opti-
mized libraries for parallelization. This simple trick leads to considerable speedups when compared
to other approaches. We use similar ideas for the parallel evaluation of the operators. Note that
even in the l = 1 case, i.e, if we wish to run SPCA from a single starting point only, there is scope
for parallelization of the matrix-vector products and function evaluations. Hence, parallelization
in our method serves two purposes:

1. to obtain solutions explaining more variance by solving the problem from several starting
points (we choose l > 1),

2. to speed up computations by parallelizing the linear algebra involved (this applies to both
l = 1 and l > 1 cases).

Figure 1: Four ways of embedding Algorithm 2 (AM) in a parallel scheme. In this example we run
AM on the same problem l = 6 times, using different starting points.

In particular, in this section we describe 4 parallelization approaches:

• NAI = “naive” (r = 1),

• SFA = “start-from-all” ( r = l),

• BAT = “batches” (l < r < l)

• OTF = “on-the-fly” (BAT improved by a dynamic replacement strategy to reduce idle time).

The working of these 4 approaches is illustrated in Figure 1 in a situation with l = 6. In what
follows we describe the methods informally, in a narrative style, with a suitable choice of numerical
experiments illustrating the differences between the ideas.

4.1 The hunt for more explained variance

As shown in [9], [10] for GPower, and due to our equivalence theorem (Theorem 1), we know that
Algorithm 2 (AM) is only able to converge to a local solution. Moreover, quality of the solution will
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depend on the starting point (SP) x(0) used. When the algorithm is run just once, the quality of
the obtained solution, in terms of the objective value (or explained variance), can be poor. Hence,
if the amount of explained variance is important, it will be useful to run the method repeatedly
from a number of different SPs. In this and all subsequent experiments we generated A ∈ Rn×p

with independent and uniformly distributed entries from [−1, 1]. Here chose n = 512 and p = 2, 048
(and renormalized the columns so that their norms are uniformly distributed on [0, 1]) and solved
the corresponding L0 constrained L2 variance SPCA problem with s = 1, 2, 4, . . . , 2048. For each s
we run AM from l = 1, 000 randomly generated SPs with maxIt = 200 and tol = 10−6. The results
are given in Figure 2, where the vertical axis corresponds to the amount of explained variance of a
particular solution compared to the best solution found.
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Figure 2: It may be easy to converge to a poor local solution.

Clearly, for small s it is easy to obtain a bad solution if we run the method only a few times;
this effect is milder for large s but may be substantial nevertheless in real life problems. Hence,
especially when s is small, it is necessary to employ a globalization strategy such as rerunning AM
from a number of different starting points. This experiment illustrates that the simple strategy
of running the method from a number of randomly generated starting points can be effective in
finding solutions with more explained variance. A “naive” (NAI) approach would be to do this
sequentially: solve the problem with one starting point first before solving it for another starting
point.

4.2 Economies of scale

Running AM in parallel, started from a number of SPs, increases the utilization of computer
resources, especially on parallel architectures. In order to demonstrate this, we generated 6 data
matrices with p = 1000, 2000, . . . , 32000 and run the AM method for the L0 penalized L2 variance
SPCA formulation with l = 256 SPs (and maxIt = 10). By BATr we denote the approach with
batches of size r. Hence, SFA = BAT256 and NAI = BAT1. Besides these two basic choices, we
look at BAT4, BAT16 and BAT64 as well. The results can be found in Figure 3.

Different problem sizes p appear on the horizontal axis; on the vertical axis we plot the speedup
obtained by applying a particular batching strategy compared to NAI. Note that even on a single-
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Figure 3: Economies of scale: “Start-from-all” (SFA) is better than any of the batching strategies
on a single-core machine (LEFT); even more so on a multi-core machine (RIGHT).

core computer (LEFT plot) we benefit from running the methods in parallel (“economies of scale”)
rather than running them one after another. Indeed, we can obtain a 2− 3× speedup with BAT16
across the whole range of problem sizes, and 4× speedup with SFA for large enough p. With 12
cores (RIGHT plot) the effect is much more dramatic: the speedup for BAT16 is consistently in
the 10− 20× range, and can even reach 50× for SFA.

4.3 Dynamic replacement

It often happens, especially when batch size is large, that some problems within a batch converge
sooner than others. The vanilla BAT approach described above does nothing about it, and continues
through matrix-matrix multiplies, updating the already converged iterates, until the last problem
in the batch converges. A minor but not negligible speedup is possible by employing an “on-the-fly”
(OTF) dynamic replacement technique, where whenever a certain problem converges, it is replaced
by a new one. Hence, no predefined batches exist—OTF can be viewed as a greedy list scheduling
heuristic. We used l = 1024 starting points and compare SFA1024 with BAT64 and OTF64–the
dynamic replacement variant of BAT64.

Looking at the LEFT plot in Figure 4, we see that the average number of iterations per starting
point is much smaller for OTF. This results in speedup of more than 2× when compared with SFA
(RIGHT plot). Notably, SFA is slower than both BAT64 and OTF64, which shows that it may
not be optimal to choose r = l.

5 Multi-core Processors, GPUs and Clusters

Accompanying this paper is the open source software package “24am”2 implementing paralleliza-
tion strategies described in Section 4, all with Algorithm 2 (AM) used as the underlying solution
method, with the option of using any of the 8 optimization formulations of SPCA described in
Table 1. The name 24am comes from the fact that we implement the solver for 3 different parallel

2https://code.google.com/p/24am/
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Figure 4: Dynamic Replacement: “On-the-fly” (OTF) is better than “Batches” (BAT), which is
better than “start-from-all” (SFA).

architectures: multi-core processors, GPUs and computer clusters, leading to 24 = 8× 3 methods
based on AM.

In this the rest of this section we first perform several numerical experiments illustrating the
speedups obtained by parallelization on these three computing architectures. We then conclude
with a real-life numerical example (large text corpora) and a few implementation remarks.

5.1 Multi-core speedup

Here we solve 9 random L1 constrained L1 variance SPCA instances of sizes p = 100×2i, i = 1, . . . , 9,
n = p/10, with 100 SPs each, on a machine using 1, 2, 4 and 8 cores; see Figure 5.
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Figure 5: Multi-core speedup is proportional to the number of cores.

The plot on the LEFT shows the total computational time; the plot on the RIGHT shows the
speedup of multi-core codes compared to the single-core code. Note that the speedup is consistently
close to the number of cores for the 2 and 4-core setups across all problem sizes, and is growing
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with p from 5× to about 7.5× in the 8-core setup.

5.2 GPU speedup

Here we solve 8 random L1 penalized L1 variance SPCA instances with p varying roughly between
103 and 105, and n = p/200. We solved all formulations with {1, 16, 256} SPs on a single-core CPU
and a GPU; the results are shown in Figure 6.
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Figure 6: GPU code can achieve 125× speedup compared to single-core when 256 starting points
are used.

The plot on the LEFT shows the total computational time. The red lines with triangle markers
correspond to the single-core setup, the “higher” the line, the more starting points were used. The
blue lines with square markers correspond to our GPU codes. While the runtime increases linearly
with problem size for the single-core codes, it grows slowly for the GPU codes. Note that the GPU
code may actually be slower for small problem sizes. Looking at the RIGHT plot, we see that the
GPU code is capable of a 100-125× speedup; this happens for large problem sizes and 256 SPs.
The speedup can reach 100× for 16 SPs as well.

5.3 Cluster code

In this experiment we solved several L1 penalized L2 variance SPCA problems with a fully dense

matrix A ∈ Rn×p; the results are in Table 4. We focus our discussion on the largest of the problems
only (last three lines of the table), one with n = 6× 103 and p = 8× 106. We used a cluster of 800
CPUs; storage of the data matrix required 357.6 GB of memory. The matrix was first loaded from
files to memory; this process took t1 = 92 seconds. Subsequently, the loaded data was distributed
to CPUs where needed, which took additional t2 = 713 seconds. Finally we run the AM method
with 1, 32 and 64 starting points and measured the average time of a single iteration; the results
are t13 = 4.1, t13 = 51.1 and t13 = 134.9 seconds, respectively. When using a single starting point, the
method would converge in about a minute. The tk3 column of Table 4 depicts the time it takes for
the solver to perform k iterations. We treated the problem directly, without using any safe feature
elimination techniques [14]. Such preprocessing could, however, be able to expand the reach of our
cluster code to even larger problem sizes.
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n× p memory # CPUs GRID SP t1 t2 t13 t43 t163

104 × 2 · 105 14.9 GB 20 10× 2 1 42.68 0.86 0.56 2.06 8.48
104 × 2 · 105 14.9 GB 20 10× 2 32 - - 4.60 18.89 87.84
104 × 2 · 105 14.9 GB 20 10× 2 64 - - 10.47 37.88 166.60

6 · 103 × 4 · 105 17.8 GB 40 10× 4 1 26.89 86.33 0.78 3.15 9.96
6 · 103 × 4 · 105 17.8 GB 40 10× 4 32 - - 7.39 27.72 125.14
6 · 103 × 4 · 105 17.8 GB 40 10× 4 64 - - 13.19 58.36 201.51

6 · 103 × 106 44.7 GB 100 10× 10 1 49.22 104.26 0.45 2.44 11.62
6 · 103 × 106 44.7 GB 100 10× 10 32 - - 6.37 29.72 115.73
6 · 103 × 106 44.7 GB 100 10× 10 64 - - 14.14 52.64 219.8

6 · 103 × 4 · 106 178.8 GB 400 10× 40 1 129.69 611.69 1.24 5.12 31.46
6 · 103 × 4 · 106 178.8 GB 400 10× 40 32 - - 17.50 61.36 255.80
6 · 103 × 4 · 106 178.8 GB 400 10× 40 64 - - 31.36 141.61 525.08

6 · 103 × 8 · 106 357.6 GB 800 10× 80 1 92.12 713.45 4.14 15.82 95.51
6 · 103 × 8 · 106 357.6 GB 800 10× 80 32 - - 51.11 324.26 619.45
6 · 103 × 8 · 106 357.6 GB 800 10× 80 64 - - 134.89 690.06 -

Table 4: Result from Cluster. For first 1 experiment the dimensions of virtual grid was the same
as loaded data and hence t2 is small. For the rest we used 64x64 pieces.

5.4 Large text corpora

In the first experiment we tested the AM method with L0 constrained L2 variance formulation
(with s = 5) on two medium-size data sets from the Machine Learning Repository [18]: news
articles appeared in New York Times and abstracts of articles published in PubMed. Each data
set is formatted as a matrix A ∈ Rn×p, where the rows of A correspond to news articles in the
NYTimes data set and to abstracts in PubMed, and the columns correspond to words. The number
of appearances of word j in article or abstract i is the (i, j)-th entry of A; the matrices are hence
clearly sparse. The NYTimes data set has 102,660 articles, 300,000 words, and approximately
70 million nonzero entries. The PubMed data set contains 141,043 articles, 8.2 million words, and
approximately 484 million nonzeroes. The matrices can be stored in 0.778 GB and 5.42 GB memory
space, respectively. We have customized the AM method to exploit sparsity as much as possible.
In Table 5 we present the first 5 sparse principal components (5 words each). Clearly, the first PC
for NYT is about sports, the second about business, the third about elections, the fourth about
education and the fifth about United States. Similar interpretations can be given to the PubMed
PCs.

5.5 Implementation details

For single and multi-core architectures we developed our codes using the CBLAS interface. In
particular, we use both the GSL BLAS and the Intel MKL [15] implementations (single-core) and
the GotoBLAS2 [16] and Intel MKL implementations (multi-core). Parallelization in the multi-core
case is performed by the OpenMP interface. When comparing the performance of single-core and
multi-core architectures, we use Intel MKL library for both serial and parallel versions of the same
algorithm for consistency. Nevertheless, in our experience, GotoBLAS2 implementation of these
algorithms are faster than the Intel MKL implementation. We use CuBLAS version 4.0 [17] on GPU
(and make use of Thrust whenever possible for operations such as sorting, memory arrangements
and data allocation on GPU). For comparisons between single-core and GPU architectures, we use
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NYT 1st PC NYT 2nd PC NYT 3rd PC NYT 4th PC NYT 5th PC

game companies campaign children attack
play company president program government
player million al gore school official
season percent bush student US
team stock george bush teacher united states

PubMed 1st PC PubMed 2nd PC PubMed 3rd PC PubMed 4th PC PubMed 5th PC

disease cell activity cancer age
level effect concentration malignant child

patient expression control mice children
therapy human rat primary parent
treatment protein receptor tumor year

Table 5: First 5 sparse PCs for NYTimes and PubMed data sets.

the GSL BLAS implementation on the single-core. On a cluster, linear algebra is done with Intel
MKL’s PBLAS, while communication between nodes is via MPI.

6 Conclusion

We propose a unifying framework for solving 8 SPCA formulations in which all have the same form
and are solved by the same algorithm: the alternating maximization (AM) method. We observed
that AM is in all cases equivalent to the GPower method applied to a suitable convex function.
Five of these formulations were previously studied in the literature and three were not; notably
the L1 constrained L1 (robust) variance seems to be new. For each of these formulations we have
written 4 efficient codes—one serial and three parallel—aimed at single-core, multi-core and GPU
workstations and a cluster. All these codes are enabled with efficient parallel implementations of
a multiple-starting-point globalization strategy which aims to find PCs explaining more variance;
with speedup per starting point achieving up to two orders of magnitude. The most efficient of
these implementations is “on-the-fly”. We demonstrated that our cluster code is able to solve a
very large problem with a 357 GB fully dense data matrix.
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