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Abstract—Undersampling Theorems state that we may gather
far fewer samples than the usual sampling theorem while exactly
reconstructing the object of interest — provided the object in
question obeys a sparsity condition, the samples measure appro-
priate linear combinations of signal values, and we reconstruct
with a particular nonlinear procedure. While there are many
ways to crudely demonstrate such undersampling phenomena, we
know of only one approach which precisely quantifies the true
sparsity-undersampling tradeoff curve of standard algorithms
and standard compressed sensing matrices. That approach,
based on combinatorial geometry, predicts the exact location
in sparsity-undersampling domain where standard algorithms
exhibit phase transitions in performance. We review the phase
transition approach here and describe the broad range of cases
where it applies. We also mention exceptions and state challenge
problems for future research. Sample result: one can efficiently
reconstruct a k-sparse signal of length N from n measurements,
provided n 2> 2k - log(N/n), for (k,n, N) large, k < N.
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I. INTRODUCTION

The sampling theorem of Shannon-Nyquist-Kotelnikov-
Whittaker has been of tremendous importance in engineering
theory and practice. Straightforward and precise, it sets forth
the number of measurements required to reconstruct any
bandlimited signal.

However, the sampling theorem is wrong! Not literally
wrong, but psychologically wrong. More precisely, it engen-
ders the psychological expectation that we need very large
numbers of samples in situations where we need very few. We
now give three simple examples which the reader can easily
check, either on their own or by visiting the website [Spa] that
duplicates these examples.

Example 1. k-Sparse Signal, general sign pattern. We begin
with a caricature of Magnetic Resonance imaging. Related
ideas have been used by MRI researchers [LP07], [LDSPOS]
to speed up dynamic cardiac imaging by a factor of 8.

We hope to recover a discrete-time signal vector xg with
N = 1600 entries, only k = 128 of which are nonzero, but
some of them may be positive and some may be negative. We
again observe many fewer that 1600 measurements; in fact
just n = 481 randomly chosen Fourier frequencies.

Figure 1(a) shows such a sparse sequence, with 128 nonzero
terms. Figure 1(b) shows the modulus of its Fourier transform,
which is quite substantial out to Nyquist. The red box indicates
the measurement cutoff at wavenumber 240. In fact fully 70%
of the signal energy lies beyond the cutoff. Naturally, one
expects that only 481 measurements will not be sufficient to
recover the signal, and in fact, if we used standard linear
methods, it would not be. However, reconstructing the signal
is possible using the solution to this ¢;-norm minimization
problem:

Ax =b.

subject to (P1)

min Z ;]
3
The results depend on the exact nature of the random subset
of Fourier coefficients observed, but with high probability, we
do get exact reconstruction. Extensive experiments show that
the probability of exact reconstruction P ~ 95.5%. For fuller
discussion, see [CRT06b], [DT09a]

Example 2. k-Sparse Nonnegative Signal. Turn to a cari-
cature of a measurement problem faced by physical chemists
who perform spectroscopy: they observe the low-frequency
content of a signal thought to have relatively few, distinct
spectral lines.

Suppose we are interested in a discrete time signal vector x
with N = 512 non-negative entries, only k = 20 of which are
nonzero, but we observe many fewer than 512 measurements;
in fact just the n = 51 lowest Fourier frequencies (wavenum-
ber < 25).

Such positive sparse signals are naturally wideband; they
have full frequency content, approximately 90% of the signal
energy is beyond the cutoff at wavenumber 25. Naturally, one
expects that a mere 51 measurements will not be sufficient
to recover the signal, and using standard linear methods, it
would not be. However, reconstructing the signal is possible

using the solution to the linear program
min 17z Ax=b z>0.

subject to (LP)

We do get exact reconstruction in this case.
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Fig. 1. Example of Successful Undersampling. Panel (a): A randomly drawn
sequence of length 1600 with 128 nonzero whose locations were drawn
uniformly from permutations of 1,2,...,1600 and whose magnitude was drawn
from the standard Gaussian (0, 1); Panel (b): The magnitude of the Fourier
Transform of the sequence in Panel (a), with the lowest 481 Fourier modes
demarked by the red box. A full 70% of the signal energy lies beyond the
lowest 481 Fourier modes. Here (P1) perfectly reconstructs the full wideband
signal from 481 random Fourier modes. Despite undersampling, (P1) gives
exact reconstruction in this case.

Theorem: for every positive signal having at most k nonze-
ros, (LP) reconstructs exactly from n > 2k + 1 Fourier
measurements. For fuller discussion, see [DJHS92], [DTO05b],
[Fuc05]

Example 3. k-Simple Bounded Signal. Now turn to a carica-
ture of a problem in infrared absorption spectroscopy [Jan97];
we observe low-pass measurements of a signal bounded be-
tween 0 and 1.

We wish to recover a discrete time signal vector zy with
N = 512 entries. By the nature of the measurements, the
values of x( are proportions taking values in the interval [0, 1].
In addition suppose that the signal has a bang-bang character,
spending most of its samples at the extremes: only k = 75 of
these values are not equal to either 0 or 1. We now observe
somewhat fewer than 512 measurements; in fact just the n =
301 lowest Fourier frequencies (wavenumber < 150).

Naturally, one expects that only 301 measurements will not

be sufficient to recover the signal, and in fact, if we use
standard linear methods, it would not be. Reconstructing the
signal is possible using the solution to the feasibility problem

r st. Ax=b and 0<2; <1 i=1,2,...,N. (Feas)

Surprisingly, there is typically a unique feasible vector which
is precisely x. In fact, among all signals of length 512 which
are bounded between O and 1 and have k entries strictly
between 0 and 1, exact reconstruction has a frequency of about
59%. For fuller discussion, see [DT10a]

These three examples illustrate a broader abstract phe-
nomenon: we don’t need N linear measurements to reconstruct
a vector with N entries — if those entries obey a sparsity
constraint or simplicity constraint. We can use fewer mea-
surements and get exact reconstruction, provided:

e Our measurements are appropriate linear combinations
of signal entries (in the above cases, subsets of Fourier
coefficients, but others will do)

« the sparsity/simplicity condition is sufficiently strong.

e Wwe use an appropriate nonlinear reconstruction method.

Recently a flood of papers in applied mathematics, information
theory, optimization, signal and image processing has explored
the implications of this phenomenon, which range from med-
ical imaging to proteomics to radar interference rejection. In
some fields — Magnetic Resonance Imaging is an example
— undersampling would make it possible to improve patient
throughput or even create totally new applications, for example
dynamic images of the beating heart or spectroscopic images
of the brain [LP07], [LDSPOS].

While this is exciting stuff, the reader may feel uneasy.
We have abandoned the certainty and simplicity of the usual
sampling theory for the vagueness of uncharted territory:
undersampling. What can replace the sampling theorem in this
setting?

In this paper, we describe a range of recent work [Don0O6b],
[Don04], [DTOSb], [DT05a], [DT09a], [DT10a] on what we
here call undersampling theorems. Such theorems conclude we
may reconstruct perfectly while making fewer measurements
than the usual sampling theorem, provided we may exploit
sparsity or simplicity. While involving relatively sophisticated
notions in combinatorial geometry — which we downplay
here — such theorems give precise information about the
tradeoff of sparsity for undersampling which underlies the
three phenomena discussed above.

To give an idea where we are headed, here is a sample result,
from Section V. Informally, for (k,n, N) large, k < N, both
(P1) and (LP) exactly reconstruct k-sparse signals of length N
from n measurements provided n 2 2k - log(N/n); but for
n appreciably smaller, both fail. To properly understand and
interpret this result of Section V requires, naturally Sections
II through IV.

In Section II we introduce the notion of phase transition and
show how this offers the correct framework for undersampling
theorems in this new setting. In Section III we explain theory
which allows precise derivation of phase transitions and hence
can be interpreted as providing the required undersampling
theorems in the case of large N. This section may be skipped



on first reading. In Sections IV and V we descibe implications
of this theory for small N and for extreme undersampling
n/N very small. Sections VI and VII describe the broad
range of types of sensing matrices A where our undersampling
theorems apply precisely. Section X mentions popular analy-
sis tools which have yielded loose undersampling theorems.
Sections IX and XI briefly mention what is known about
undersampling theorems and phase transitions for properties
besides exact reconstruction and for algorithms besides the
three already mentioned. Section XII finishes the paper with
a list of challenges remaining in this area.

We also catalog some exceptions which have been discov-
ered and which can be quite interesting.

II. PHASE DIAGRAMS AND PHASE TRANSITIONS

We now develop a systematic framework for understand-
ing the undersampling phenomena of the introduction. We
conducted extensive computational experiments over the last
few years, systematically attempting to find sparse solutions
to a large variety of systems y = Az which possess sparse
solutions. Each such system has the form y = Axg where xg
is an N-vector with having k£ nonzeros, and A is an n x N
matrix. We regard y as information measured from the object
xo and A as the measurement matrix. A problem instance is
a pair (y, A).

In the basic experimental unit, we present a problem in-
stance — but not the underlying object xy — to an algorithm
and evaluate whether it can reconstruct z to within a specified
accuracy, producing a score of ‘success’ or ‘failure’ on that
instance.

Consider an experiment generalizing Example 1 of the
introduction. We generate the n X N matrix A of a problem
instance by taking n rows at random from the /N x [N Fourier
matrix. We generate a random N-vector z by picking k sites
at random in 1,..., N and randomly place +1’s in those
sites; all other entries in xy are zero. We then present this
problem instance to a convex optimization routine for solving
the ¢; minimization problem (P;), and record a success if the
solution agrees with zq to relative error 1075,

The whole experiment considers many such problem in-
stances varying several parameters with replications. We con-
sider N = 1600 and vary n systematically through a grid
ranging from n = 160 up to n» = 1440 in 9 equal steps. At
each combination N, n, we vary k systematically from 1 to
n. Finally, at each combination N, n, k we consider M = 200
different problem instances zy and A, each one drawn ran-
domly as above. We end up with data (N, n, k, M, S) where
S is the number of successes in M trials.

It is very convenient to display results graphically with
a standard set of undersampling/sparsity coordinates: § =
n/N and p = k/n. § measures the degree of determi-
nacy/indeterminacy of the system: 0 < 6 < 1, with 6 =1
meaning the matrix A is square and so the system y = Az is
well-determined, while 6 < 1 meaning the matrix A is very
wide and the system y = Ax is very underdetermined. Equiva-
lently § is the undersampling factor: § = 1 indicates marginal
undersampling while 6 < 1 means high undersampling. p
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Fig. 2. Empirical Phase Transitions for Undersampling. Lower set of curves:
level curves of success probabilities S/M for Experiment 1 at values 0.1 (red),
0.5 (green), and 0.9 (blue); p(d; C) overlaid in black is in close agreement
with the 0.5 level curve, partially obscuring it. Higher set of curves: level
curves of success probabilities S/M for Experiment 2 at values 0.1 (red), 0.5
(green), and 0.9 (blue); p(8;T) overlaid in black is in close agreement with
the 0.5 level curve, partially obscuring it.

measures the sparsity and/or density of the object zg to be
recovered: p close to zero means the vector is very sparse, p
close to 1 means it is almost fully dense. We call the domain
(8, p) € [0,1]? the undersampling/sparsity phase space.

Figure 2 portrays results from the experiment just described;
three colored curves indicate level sets of S/M, the fraction
of successful reconstructions at (n/N, k/n); success rates of
90%, 50% and 10% are indicated by the lower set of blue,
green, and red curves respectively. There are two clear phases:
one where the fraction of success is essentially one and another
where the fraction of success is essentially zero. In between
these phases is a narrow transition zone where the fraction of
success drops from 1 to 0. (The width of the transition region
between two level curves decays as n~ '/ as the problem size
increases [DT10a].)

The plot is decorated with a curve in black (lower) showing
a function p(d; C) derived from combinatorial geometry and
discussed in the next section. Evidently the black curve agrees
closely with the green 50% success curve; it thus separates the
diagram into two phases, and accordingly we call the display
a phase diagram.

In short, the experimental data exhibit the phenomenon of
phase transition; the phase transition occurs at a theoretically-
derived location k ~ np(n/N;C). Now since A is in effect
sampling information about xy and we definitely succeed in
reconstructing zo for k/n below p(n/N;C), the theoretical
curve p(d,C) can be called the phase transition boundary
for this situation. It gives precise guidance on the number of
samples needed to reconstruct xo with high probability.

The reader now has an explanation of our title: an under-
sampling theorem in this arena of trading off indeterminacy
for sparsity is quite simply a mathematical derivation of the
location of a phase transition.

The phenomenon is far broader than this one experimental
result.



More generally, we may consider other suites of problem
instances. In such a suite, the matrix A is drawn from a
specific matrix ensemble £. The introduction considered either
deterministic or random submatrices of the N x N Fourier
matrix, but many other ensembles are possible. In such a suite,
the coefficient vector x( is drawn from a specific coefficient
ensemble C. In the introduction, we considered three ensem-
bles: k-sparse vectors with nonnegative entries, or k-sparse
vectors with nonzeros having both signs, and k-simple vectors,
i.e. vectors bounded between 0 and 1, with all but & entries
either 0 or 1. Finally, we can consider various reconstruction
algorithms; in the introduction we reconstructions solved (P1)
(LP), and (Feas) respectively.

The second argument in the phase transition boundary
curves p(d; @) denotes a priori information about the signal
model, with C, T, and I associated with the models discussed
in Experiments 1-3 respectively and the associated reconstruc-
tion solvers (LP), (P1) and (Feas) respectively. The choice of
this notation will be discussed in Section III.

Figure 2 also presents a variant on Example 2 of the
introduction, where we replace a specific partial Fourier matrix
by a random matrix. It shows the case where A is a Bernoulli
matrix with entries independently chosen by tossing a fair coin
having signs labelled 0 and 1, the coefficients are either zero or
1 and the coefficient vector has k£ nonzeros. The reconstruction
algorithm is to solve (LP). The upper set of blue, red, and
green curves in this figure display the 90%, 50%, and 10%
success fraction S/M as function of undersampling rate § and
sparsity p. The upper black curve displays a function p(d;7T)
again derived from combinatorial geometry, also to be defined
in the next section. The experimental data again exhibit a phase
transition at a theoretically-derived location k ~ np(n/N;T)
— but at a new location, as p(§;T) > p(d;C). We have a
new undersampling theorem offering precise guidance on the
number of samples needed to reconstruct a nonnegative vector.

Example 3 of the introduction could be elaborated in a
similar fashion. In such an experiment, A is a Gaussian matrix,
with entries independently chosen from the standard Normal
distribution N(0,1). The coefficients are bounded between
0 and 1 and with all but £ of them randomly assigned to
be either 0 or 1, the other k& are chosen from a uniform
distribution. We call such vectors k-simple. The reconstruction
solves (Feas). We could at this point display experimental
results showing the expected success fraction S/M as function
of undersampling rate 0 and sparsity p; but as the expectation
of S/M can be explicitly calculated we skip the computational
experiment entirely. Again there are two phases, separated
by the curve p(8;1) := max(0,2 — 6~ ') also derived from
combinatorial geometry; see the blue curve in Figure 3.
We again have a phase transition at a theoretically-derived
location k =~ np(n/N;I) — but at a new location. We have a
new undersampling theorem offering precise guidance on the
number of samples needed to reconstruct a k-simple, bounded
vector.

We speak of undersampling theorems, but theorems usually
come with formal hypotheses and conclusions. We decided
to give the reader a specific experimental setup before going
into theoretical issues, as we will below. Also, the reader may

suspect we are engaging in bait-and-switch tactics — starting
out in the introduction with partial Fourier matrices — having
a well-defined meaning to engineers — but now substituting
various random matrices. Actually the phenomena we discuss
are quite general and would be the same for many classes of
matrices — exceptions will be explicitly noted.

III. COMBINATORIAL GEOMETRY

We now discuss the mathematical underpinnings of the
undersampling theorems p(0; Q) for Q = T, C, I; including
the black curves of Figure 2. While this material is what gives
rigor to the notion of undersampling theorem, it is far more
abstract than everything else in this article. We have written
the paper in such a way that this section may be skipped on
first reading.

A. Polytope Terminology

Let P be a convex polytope in RN, i.e. the convex hull
of points py,...,pm. Let A be an n x N matrix. The image
@ = AP lives in R™; it is a convex set, in fact a polytope;
the convex hull of points Apy,..., Ap,,. @ is the result of
*projecting’ P from RN down to R™ and will be called the
projected polytope.

The polytopes P and () have vertices, edges, 2-dimensional
faces, ... . Let fx(P) and fx(Q) denote the the number of such
k-dimensional faces, thus fo(P) is the number of vertices of
P and fn(P) the number of facets, while fo(Q) the number
of vertices and f,(Q) the number of facets. Projection can
only reduce the number of faces, so

fe(Q) = fr(AP) < fi(P),

Three very special families of polytopes P are available in
every dimension N > 2, the so-called regular polytopes:

k> 0.

o The simplex (an (N — 1)-dimensional analog of the
equilateral triangle)

TN .= {xERN| in =1,

i=1

x; > 0}, (111.1)

o The hypercube (an N-dimensional analog of the cube)

IN:={zeRN] 0<x <1}, (I11.2)
and the
e cross-polytope (an N-dimensional analog of the octahe-
dron)
oV = {:c eRN| D xil <1, } (I1L.3)
i=1

B. Connection to Underdetermined Systems of Equations

The regular polytopes are simple and beautiful objects, but
are not commonly thought to be useful objects. However,
their face counts reveal solution properties of underdetermined
systems of equations. Such underdetermined systems arise
frequently in modern applications and the existence of unique
solutions to such systems is responsible for the three surprises
given in the introduction. Consider first the case of the simplex.



Consider the underdetermined system of equations yy, =
Ax, where A is n x N, n < N . Of course, ordinarily, the
system has an infinite number of solutions as does the problem
(LP) .

Lemma 3.1: Suppose the columns of A are in general
position in R and that the left hand side yo of the system
has a sparse solution yy = Az where x¢ > 0 has k nonzeros.
Among all systems (yo, A) of this form, the fraction of systems
where (LP) has the associated x( as its unique solution is

fk(ATN_l)
fue(TN=1)

In short, the ratio of face counts between the projected
simplex and the unprojected simplex gives the probability that
(LP) reconstructs the x( associated with (yo, A) given that
Az = yo admits a nonnegative k-sparse solution.

Consider next the case of the cross-polytope. Consider the
optimization problem (P1) applied to the problem instance
(yo, A) generated by an underdetermined system of equations
yo = Axg, where A is n x N, n < N . Of course, ordinarily,
both the linear system and the problem (P1) have an infinite
number of solutions.

Lemma 3.2: Suppose the columns of A are in general
position in R and that the left hand side yq of the system has
a sparse solution yy = Axy where z( has k nonzeros. Among
all systems (yo, A) of this form, the fraction where (P1) has
the associated x( as its unique solution is

fraction{Reconstruction using (LP) } =

, ) . Je(ACY)
fraction{Reconstruction using (P1) } AR

In short, the ratio of face counts between the projected cross-
polytope and the unprojected cross-polytope gives the prob-
ability that (P1) reconstructs the x associated with (yo, A)
given that Ax = yo admits a k-sparse solution.

Consider now the case of the hypercube. Consider the
feasibility problem (Feas), on a problem instance (yo, A) with
an underdetermined system of equations yy = Ax, where A
isn x N, n < N . Again, ordinarily the linear system and the
problem (Feas) have an infinite number of solutions.

Lemma 3.3: The columns of A are in general position in
RN and the left hand side yo of the system has a simple
solution yy = Axg where xy has at most k values which
are strictly between the bounds [0,1]. Among all instances
(yo, A) of this kind, the fraction of systems where (Feas) has
the associated z as its unique solution is

, . : fr(AIN)
fraction{Unique Solution to (Feas) } I

In short, the ratio of face counts between the projected
hypercube and the unprojected hypercube gives the probability
that (Feas) has an unique solution given that it has at least a
k-simple solution.

In short, it is essential to know whether or not

fk(AQ) 1
fe(Q)

for @ in the three families of regular polytopes.
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Fig. 3. Three Asymptotic Phase Transitions. p(§; Q) for Q@ = T (green),
Q = C (red), and Q = I (blue).

C. Asymptotics of Face Counts with Gaussian Matrices A

How does one actually find the face counts mentioned
in the above three lemmas? Consider the case where the n
by N matrix A has iid Gaussian random entries, and N
and n are both large. Then the mapping @ — AQ is a
random projection. In this case, rather amazingly, tools from
polytope theory and probability theory can be combined to
study the expected face counts in high dimensions. The results
demonstrate rigorously the existence of sharp thresholds in
face count ratios.

Theorem 1: [DTO05a], [Don06b], [DT09a], [DT10a] Let the
n x N random matrix A have iid N (0, 1) Gaussian elements.
Consider sequences of triples (N,n,k) where n = 6N ,
k = pn, and N — oo. There are functions p(d;Q) for
Q € {T,C, I} demarcating phase transitions in face counts:

iy JR(AQ) :{ 1 p>p(0,Q)
N=oo fi(Q) 0 p<p(6,Q)

Figure 3 displays the three curves referred to in this theorem.
One can see that the simplex has the “highest’ transition, and
the hypercube the ’lowest’.

To the authors, even after some time, it still seems surprising
that a sharp phase transition can be observed experimentally
and that anything at all can be proven. In fact many phase
transition phenomena are observed in statistical physics, but
rigorous results are very rare. Our approach relies on fun-
damental contributions made by Affentranger and Schneider
[AS92] and by Vershik and Sporyshev [VS92] in combinato-
rial geometry which, to say the least, seem quite remote from
the sampling theorem!

IV. FINITE-N UNDERSAMPLING THEOREMS

The phase transitions p(J, Q) discussed in Section II, and
made precise by Theorem 1, describe the situation N — oo.
There are also finite-N results. The most explicit are for (Feas);
[DT10a] gives an exact formula for the expected fraction
of successes as a function of undersampling, sparsity, and
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problem size,

ERAIY) oy "N~ (N — k- 1)
AV 20 )

For (LP) and (P1) [DT10b] gives bounds on expected
success fractions for A from the Gaussian ensemble. These
bounds generate a family of curves, indexed by /V, bounding a
region where the expected success fraction exceeds 1 —e. Such
curves are displayed in Figure 4 for ¢ = 1/100, Ny = 400
(blue), Ny = 1600 (green), and Ny = 6400 (red).

Here is a simple formula providing useful bounds:

Theorem 2: [DT10b] Let the n x N random matrix A have
iid N(0,1) Gaussian elements. Consider sequences of triples
(N,n, k) where n = 6N , k = pn, and N > Ny. (LP) and
(P1) will successfully recover at least 1 — € fraction of the
problem instances provided

n>k/p(6,Q) (1 - R(e,n,N))™,

where R(e,n, N) := 2[n~'log(4(N + 2)%/¢)]*/2.
Evidently, this bound is asymptotically precise: it ap-
proaches the phase transition with increasing N.

V. ASYMPTOTICS AS 6 — 0

The blue curve p(d; I) in Figure 3 vanishes below § = 1/2.
Informally, we cannot undersample by more than a factor two
in this situation, no matter how simple we know the object to
be! This will be satisfying to readers with a pessimistic nature.

Much more surprising is the fact that the red and green
curves in Figure 3 stay positive whenever § > 0: there is
no hard limit on undersampling. For any given degree of
undersampling, there is a precise sparsity level at which such
undersampling leads to valid reconstructions. Readers with
an optimistic nature may be inspired to attempt ambitious
undersampling applications. Thus, stimulated by the notion
of compressed sensing, we have heard scientists working in
MRI announce successful use of undersampling by a factor 8§,
but optimistically announce efforts to undersample by much
larger factors. The benefits for advanced medical research and
someday to patients and doctors would be considerable.

What do the red and green curves in Figure 3 say about
the possibility of undersampling at very high factors? Careful
mathematical analysis gives the following.

Theorem 3: [DT09a]

p(5;C) ~ [2log(1/6)] 7",
p(8;T) ~ [2log(1/)] ",

6 — 0.
6 — 0.

Informally, we can reconstruct a k-sparse object from n
samples provided

kS n/(2log(N/n)).

More precise formulas, effective in finite samples, are available
in [DT10b].

One remarkable aspect of this theorem: the value of posi-
tivity constraints, so evident at moderate undersampling factor
0 in Figures 2 and 3, evaporates at extreme undersampling.

VI. UNIVERSALITY ACROSS MATRIX ENSEMBLES

The theory discussed so far assumes that the matrix A
has Gaussian iid entries. However, Section II showed that
the theory correctly located phase transitions for nonGaussian
ensembles. There is existing theory proving rigorously that
some nonGaussian matrix ensembles offer phase transitions
at the same place as Gaussian ones. In other cases, there is
massive empirical evidence that they do. In this subsection we
mention some theory.

First, we note that, for any nonsingular n x n matrix B, the
problem instances (y, A) and (By, BA) both lead to success
or failure identically the same. In particular, if we suppose that
A has linearly independent rows (happens with probability 1
at the Gaussian ensemble) then setting B = (AA’)~1/? the
matrix A’ = BA yields a random orthoprojector RN — R™.
In fact A’ is uniformly distributed on the space G(N,n) of
orthoprojectors. We see what was already implicit in Section
III: all results for random orthoprojectors are identical to those
for Gaussian iid matrices.



Second, we note that the blue curve p(d, I) is quite generally
applicable. Suppose we consider problem (Feas) where xg is
chosen randomly from the ensemble with k entries chosen at
random having arbitrary values strictly interior to (0, 1) and
the other NV —Fk entries equal to 0 or 1, with the choice between
these being made independently and equally likely. Then the
probability that z¢ will be unique solution to (Feas) is exactly
the same for every matrix A with nullspace ker(A) in general
position with respect to the coordinate axes. In a clear sense,
for problem (Feas), almost every fixed matrix behaves like a
Gaussian random matrix.

These two results are the main theoretical information
known at this time; however, as Section II showed, the
phenomenon is much broader.

VII. EMPIRICAL RESULTS FOR NONGAUSSIAN
ENSEMBLES

Over the last few years we ran thousands of computer exper-
iments in which we set up specific underdetermined systems of
equations of various kinds, ran standard optimization tools to
select specific solutions, and checked whether the solution was
unique and/or sparse. The bulk of this effort has found results
in line with the narrative in this paper so far. In most cases,
calculations derived from Gaussian polytope theory accurately
match the actual outcomes of our experiments, even though
the matrices involved are not Gaussian

To illustrate this point, we quote results from [DTO09b]
concerning several random matrix ensembles:

o Gaussian iid. A has standard normal entries.

o Partial Fourier. A is a random n by N matrix formed by
selecting n rows at random from the N by N Fourier
matrix.

o Partial Hadamard. A is a random n by /N matrix formed
by selecting n rows at random from the N by N
Hadamard matrix.

o Rademacher. A is a random n by N matrix with matrix
entries =1 equiprobable.

o Bernoulli. A is a random n by N matrix with matrix
entries 0 and 1 equiprobable.

o Random Sparse Expander Graphs. A is a random n by N
matrix with nonduplicative columns having |p-n| entries
equal to one and all other entries equal to zero.

o Random Ternary. A is a random n by N matrix with
matrix entries {0, £1} and both nonzeros equiprobable;
the chance of a nonzero being p.

We either generated nonnegative sparse vectors, and solved
(LP) or general sparse vectors, with both positive and negative
entries, and solved (P1); and we studied a wide range of
undersampling factors § = n/N, and sparsity levels p = k/n.
Figure 5 presents results from [DTO09b] , showing the level
curves for 50% frequency of exact reconstruction, for each
of the 7 ensembles above. The appropriate theoretical curves
p(0; Q) are overlaid. The Uppermost seven curves present the
data for the nonnegative case, ) = T, solve (LP) ; and
the seven lower curves present the data for @ = C, with
(P1) solved. At problem size N = 1600 and we varied n
systematically through a grid ranging from n = 160 up to

1 T T
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Bernoulli

0.9 Fourier
Ternary p=2/3
Ternary p=2/5
Ternary p=1/10
Hadamard
Expander p=1/5
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Fig. 5. Empirical Universality: N = 1600. 7 Upper curves: level curves for
50% success rate of (LP) reconstruction under 7 random matrix ensembles.
Asymptotic phase transition p(d;7") is overlaid in black. 7 Lower curves:
level curves for 50% success rate of (P1) under 7 random matrix ensembles.
Asymptotic phase transition p(d; C) overlaid in black. The 50% success rate
level curves are largely obscured by the asymptotic limit p(d; Q) proven for
the Gaussian ensemble, not deviating by more than 2 x 10~2 for this value
of IV, and agreeing even more accurately for larger values of N [DTO09b].

n = 1440 in 9 equal steps. At each combination N,n, we
varied k systematically from 1 to n. For each k, the location
of the nonzeros in xg are drawn uniformly at random from
the permutations of 1,2, ..., N. Finally, at each combination
N,n,k we considered M = 200 different problem instances
xo and A, each one drawn randomly as above. We end up
with data (N, n, k, M,S) where S is the number of successes
in M trials. Further details are given in [DT09b].

We see very good agreement between the empirical results
for each of the matrix ensembles, and the asymptotic theory.
This is not surprising for Gaussian A: it simply demonstrates
that the large- N theory works accurately already for moderate
N. For the nonGaussian ensembles (besides uniformly dis-
tributed random orthoprojectors) the fact that phase diagram
behavior matches the Gaussian case goes far beyond current
theory. [ALTJ09] proves that, for a range of random matrix
ensembles with independent identically distributed entries,
there is a region in the phase diagram where the expected
success fraction tends to one. It has not yet been proven that
this region matches the region for the Gaussian.

VIII. KNOWN EXCEPTION

While some large family of matrix ensembles follows the
same phase transitions as the Gaussian ensemble, there is one
phase transition proven to be better than the Gaussian ensem-
ble. It was mentioned already in Example 2 of the Introduction.
One observes merely the n = 2k + 1 lowest frequencies of a
nonnegative sequence solving (LP) yields exact reconstruction.
This corresponds to exact reconstruction below p = 0.5 at
every 6 > 0. At extremely high undersampling, i.e. small §,
this is dramatically larger than all other transitions which have
been observed — compare with the blue curve p(d;T) for the
Gaussian case; as we have seen, p(6,T) ~ (2log(1/6))~!
which is much smaller than 1/2 at small 0.



This amazing behavior is quite special, limited to the
case were the coefficients of the object xy are known to be
nonnegative and arises from the theory of neighborly polytopes
see eg. [DT05a] and citations there. For the case where xg
has both positive and negative signs, Barvinok and Novik
[BNO8] proposed that a related A matrix would have good
properties, however, in our own extensive empirical tests, it
closely matches the Gaussian.

IX. PHASE TRANSITIONS FOR OTHER PROPERTIES

We discussed so far only one question: does exact recon-
struction occur for typical individual problem instances? At
base we are considering the triples (k, n, N') where face counts

obey
fiu(AQ)
fr(@Q)

as (k,n,N) grow large. Here @Q is one of the polytopes
underlying our chosen algorithm.

In fact, we can ask other questions and observe other
phase transitions. This exact reconstruction may hold, with a
given A for all problem instances of a given sparsity. Such a
matrix A can be used repeatedly as a sensing matrix and will
permit exact reconstruction every time the problem instance
has a k-sparse solution. This has a combinatorial geometry
interpretation: the matrix A yields face counts obeying

(AQ) = fx(Q);

the face counts are not just close, but actually equal. This
condition is equivalent to the null-space condition, Vz such
that Az =0, and Vz on any k-face of Q, {z + 2z} Q = «.

This more stringent condition has also been studied in
[Don06b], [DTO0S5a], [DT09a], [DT10a], and undersampling
theorems exist for this case as well. We call the phase
transitions for this property the strong transition, in distinction
to the earlier ones which we also call the weak transition.
Modifying notation to accommodate the new notion, these
transitions occur at curves p(9; C, strong) and p(d; T, strong)
which are ‘below’ their weak counterparts:

p(3;Q, strong) < p(8; Q, weak).

Moreover, there is no strong transition for @ = I N and there
is no strong undersampling theorem:

=1+ o0(1),

p(0; 1, strong) = 0, Vo € (0,1).

We may consider approximate sparsity; say that a vector x
is (k, €)-sparse if there is a subset J of cardinality k such that

Yo lz(l < ey [l
Je J

Ordinary sparsity is the case where ¢ = 0. Xu and Hassibi
[XHOS8] have announced asymptotically precise undersampling
theorems assuming (k, €)-sparsity. They show in a region of
the phase diagram, (P1) approximately recovers a k-sparse ap-
proximation to an approximately sparse vector, with specified
approximation error in ¢; norm proportional to €. Their region
is bounded by a curve p.(J;C) depending on € > 0. They
show that p.(3;C) — p(6;C) as € — 0, with p(§;C) as in

Section III. Xu and Hassibi’s result shows that undersampling
is a robust phenomenon: there is no ’qualitative gap’ between
what is true for approximate sparsity and what is true for strict
sparsity.

Following the submission of this article, Stojnic [Sto09] pre-
sented an alternative derivation of p(d; Q, weak) for @ =T, C
as well as somewhat different thresholds p(d; Q, strong) for
@ = T, C. This alternative derivation focuses on the null-space
condition rather than the equivalent polytope condition.

Martin Wainwright [Wai09] has obtained phase transition
results for a different property and slightly different problem
set up. In a notation consistent with our paper, he considers
the case y = Az + ez where z is a random noise (for example
Gaussian iid noise) and € > 0 is a noise level parameter. Since
noise is present, we can no longer expect exact reconstruction.
Wainwright’s goal is to identify triples (k,n, N) where a
given algorithm reconstruct with nonzeros only at the correct
positions. He shows that the best achievable boundary is

pg——"

~ Rlog(N — k)
when (k,n,N) are all large. Below this boundary, support
recovery occurs with overwhelming probability and above this
boundary is fails. Note that this boundary does not allow the
sparsity control parameter k to be of size c¢-n; instead it must
be of size o(n), because of the log term. In comparison, all
other results in this paper allow on a scale cn, where ¢ =
p(n/N) for a specified p(J). Wainwright has now compiled
transition information for several interesting algorithms; it is
interesting to see how the transition varies depending on the
noise and the algorithm.

X. OTHER UNDERSAMPLING THEOREMS

Many undersampling theorems exist; though mostly they
cannot be considered precise undersampling theorems, as they
do not explain precisely the boundary between success and
failure for given algorithms and typical problem instances. We
briefly discuss the situation for ¢; minimization which is the
single most studied algorithm up to now.

The earliest undersampling theorems were based on the
notion of coherence and covered only cases where k < /n,
[DHO1], [EBO2], [Fuc05], [GNO3], [DE03], [Tro04] which is
much weaker than the ~ pn we know to be descriptive of ac-
tual performance (this was already discussed and demonstrated
in [DHO1]) Candes, Romberg and Tao [CRTO06a] improved
the situation in the setting of Example 1 to k < en/log? (V)
for § = 6 which is still short of typical behavior; Donoho
[Don06a], Candes and Tao [CTO5] and Rudelson Vershynin
[RV08] studied Gaussian matrices and/or random orthoprjec-
tors and finally pushed the situation to k& < cn, but without
precise information about the the dependence of ¢ on n/N
or, in fact whether the transition was sharp. The approach
developed in [CTO5] — so called Restricted Isometry Property
(RIP) — became very popular, and a very large number of
articles in the last 5 years use it in a wide variety of problems.

However the RIP approach is seemingly not precise. Blan-
chard, Cartis and Tanner [BCTO08] have determined the most
precise bounds known on the needed RIP constants and have



found that, for bounding the strong transition for matrices from
the Gaussian ensemble, the best known bounds based upon the
RIP are substantially below the precise boundary (derived via
polytope theory) and even lower than the method of Rudelson
and Vershynin, see Figure 6(a).

XI. OTHER SPARSIFYING ALGORITHMS

We so far discussed phase transitions for three algo-
rithms: (LP), (P1), and (Feas). But phase transitions have
been observed for many other algorithms by many re-
searchers and are commonly displayed in talks at confer-
ences. [DTDS08], [DT08], [MD], [NT09], [DMO09], [BD09],
[JXHCO8], [BGI*08] consider algorithms running much faster
than do standard solvers for (P1). Those algorithms do not
solve any standard optimization problem; however, they do
provide reasonably good transitions.

Phase transitions occur for other properties of algo-
rithms. [DTO8] showed that the homotopy/LARS/LASSO al-
gorithms for solving (P1) exhibit phase transitions in oper-
ation counts. Below an empirically observed curve in spar-
sity/undersampling phase space, the algorithms run much more
rapidly than they do above that curve. This empirical curve
approximates the red curve p(J; C) in Figure 3.

At the moment no theory accurately derives formal expres-
sions matching empirical observations for algorithms besides
the central three discussed above. (The theory in [DTDSO0S]
is semi-empirical. In the noisy case, Wainwright and co-
authors [Wai09], [OW]] derive formal expressions for various
algorithms which match experiments, however, for the support
reconstruction property, not the recovery property).

What has been proven for most algorithms is far weaker
than what typically happens. The most popular analysis tech-
nique works with the RIP constants of the sensing matrix A;
a typical result has the form “if the RIP constants of A are
appropriately bounded, this algorithm exactly reconstructs”.
The RIP constants can in principle be obtained once the matrix
A is specified; however, computing the RIP constants seems
to require a massive combinatorial enumeration, and has an air
of impossibility. Currently no large deterministic matrices are
known to have useful RIP constants. Large Gaussian random
matrices do typically have useful RIP constants. Using the
best known bounds on RIP constants for Gaussian random
matrices, [BCTTO09] is able to reinterpret several well-known
recovery results implied by RIP assumptions. The reinterpre-
tations provides lower bounds on the phase transition location
for some popular algorithms. As Figure 6 shows, the RIP
based results, even with the best known constants, are much
weaker than the results we have seen in Figure 3. It would be
interesting to know weather this gap is caused by intrinsic
properties of the algorithm, or by slack in the method of
analysis, or by a combination of both. A similar analysis of the
RIP(1) used in [BGIT08] and [JXHCO8] for expander graphs
has not been conducted.

XII. RESEARCH CHALLENGES

We propose the following challenges:
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Fig. 6.  Bounds on Phase Transitions implied by RIP. Panel (a): Lower
bounds on the strong phase transition for (P1) with A having Gaussian normal
entries; from top to bottom: pg(d;C, strong) from [Don06b], [Don04]
(black) derived by counting faces of AC, Rudelson and Vershynin [RV08]
(green) derived using covering properties from geometric functional analysis,
and Foucart and Lai [FL09] (blue) implied by the RIP; Panel (b): Lower
bounds on the strong phase transition for A having Gaussian normal entries,
using the following algorithms [BCTTO09]; from top to bottom: Iterated
Hard Thresholding (red) [BD09], Subspace Pursuit (magenta) [DMO09], and
CoSaMP (black) [NT09].

A. Characterize Universality classes of Gaussian Phase
Transitions. We have shown that many ‘random’
matrix ensembles yield phase transitions matching
those of Gaussian matrices. Characterize the precise
universality class of such matrices.

B. Discover New Transitions for (LP) and (P1)

Many but not all matrix ensembles yield phase
transitions matching those of Gaussian matrices. Dis-
cover more examples which don’t, and which are
also interesting matrix ensembles, either because the
phase transition is better or because the matrix is
explicit and deterministic.

C. Discover an analog of Example 1 (n = 2k + 1)
for the signed case. If there is no such analog,
characterize the best achievable performance and the
matrices which achieve it.



[ALTJ09]

[AS92]

[BCTO8]

[BCTTO9]

[BD09]

[BGIT08]

[BNOS8]

[CRTO06a]

[CRTO6b]

[CTO5]

[DEO3]

[DHO1]

[DJHS92]

[DMO09]

[Don04]

[Don06a]

[Don06b]

[DTO5a]

Discover an analog of Example 1 for the 2D case. If
there is no such analog, characterize the best achiev-
able performance and the matrices which achieve it.
Derive phase transitions of new algorithms. Discover
formal theory which precisely locates phase transi-
tions that have been observed for other algorithms
Derive phase transitions for Accurate Recovery in
Noise. When noise is present we can no longer expect
exact reconstruction, but we can expect stable recov-
ery (error at most proportional to noise level). phase
transitions have been observed empirically for such
properties. Formal results would give undersampling
theorems in noise. Derive such results.
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