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ABSTRACT O(NM) per iteration. On the other hand, orthogonal Match-
: . . . ing Pursuit has superior performance. Different fast imple
I\/(Ijatcrlnng.li’]ursun agd ortgog_onal Match_lng ||3urSU|t ar® mentations are now available, however, these do not achieve
fons. Orthogonal Matching PursLit & known to offer better 1 1astO(NIogN) complexity of Matching Pursuit. More
perfo.rmance but Matching Pursuit allows more efficient im_lmportantly these methods also require additional strage
LT ; which for large scale problems can become a limiting fac-
plementations. In this paper we propose novel greedy Pur,[-Or
suit algorithms based on directional updates. Using a con-—""
jugate direction, the algorithm becomes a novel implemen
tation of orthogonal Matching Pursuit, with computational
requirements similar to current implementations based o

QR factorisation. A significant reduction in memory require

In this paper we develop an implementation of orthogo-
nal Matching Pursuit based on conjugate direction updates.
This method requires the same computational resources than
ther fast implementations of orthogonal Matching Pursuit

\We therefore propose an approximation of the conjugate di-

ments and computational complexity can be achieved by ARaction, which can be computed more efficiently and which
proximating the conjugate direction. Further computasbn requires significantly less storage. A further simplifioati

'Sr?\\grt]v%z (r:::ulttﬁ m;dg rﬁ)hl #:Igge?hztgigﬁt g&%‘fg?é ﬁ/'lft(?r']cjg'then introduced, which uses the gradient direction. This
galg P approach offers additional computational savings.

ing Pursuit in their computational requirements, their per We start the development with a review of Matching Pur-

]Ic\(/l)g':::%ri]r?eIgsut:gmtev\CiEth'tngvgsr:itohge gllg\?veerr;%th%%;g?gggnaéuit and orthogonal Matching Pursuit in section 3. State of
9 gntly PD the art implementations of orthogonal Matching Pursuit are

Jugate direction based approach outperforming the gratjler‘then reviewed in section 4 before we develop the conjugate

descent method. direction based algorithm in section 5. The approximate im-
plementation of orthogonal Matching Pursuit are developed
in 6 while some computational performance studies are pre-
sentedin 7.

1. INTRODUCTION

In this paper we are interested in modelling a vestaising
the linear model: 2 NOTATION

x=®Py+eg, Q) . ) )
In this paper we use the following conventions. THecol-

wherey € RN andx € RM with N > M. If we allow for a
non-zero erroe we talk about a signapproximationwhile
for zeroe we have an exact signedpresentation

Given anovercompletefull rank matrix @ (commonly
called the dictionary) and a signa) the problem is to find

an optimally sparse expansign i.e an expansion with the

umn of ® will be denoted byg. The setl™ will be a set
containingn indices. The matrixPrn will be a sub-matrix
of @ containing only those columns df with indices in".
We use the same convention for vectors, exgn is a sub-
vector ofy containing only those elements piwith indices
in I'". In general, the superscript in the subscripyef re-

largest number of zero (or very small) elements. This probminds us that we are in iteratiam on occasion, however,
lem is known to be NP-hard [1] and different sub-optimalwe use additional superscripts, e.gP;l now refers to an
strategies have to be used. These are generally based on cordimensional vector as calculated in iteratios 1. In gen-
vex relaxation of the problem, non-convex (often gradieneral, in iteratiorn — 1 we only update elements with indices
based) local optimisation or greedy search strategiesdyre in M1, therefore, the element igrP;l which is not iny"-%

rn-1

methods include the Matching Pursuit [2] and orthogonayill typically be zero. We also make heavy use of the Gram

Matching Pursuit [3] algorithms.

matrix Grn = O, drn.

Matching Pursuit is one of the fastest strategies and very

efficient O(NlogN) implementations for each iteration are
possible [4], [5] if @ is the union of dictionaries that al-

3. FROM MATCHING PURSUIT TO
ORTHOGONAL MATCHING PURSUIT

low fast transforms. For general dictionaries the method is

Matching Pursuit [2] is a greedy algorithm that iterativedy
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nitude) inner product with the current approximation error
i.e the algorithm selects that atom that on its own leadsdo th
largest reduction in the approximation error. In the firepst
the approximation errar® is the signak itself. After an el-
ement is selected, the coefficientsare updated by adding



the value of the inner product to the appropriate coefficientl. Initialiser® =x,z°=0,r’= 0o
yi- The error is then reduced accordingly. More formally we 2. forn = 1;n:= n+ 1 till stopping criterion is met

write this algorithm as: (8) 0" =oTr"
1. |nitia"ser0 = X,yo =0 (b) in — arg max||:|i|
2. forn=1;n:= n+ 1 till stopping criterion is met (c) I =rn-1yjn
(@) O"=@Ty" (d) Update Qrn and Rrn such thatQrRrn = ®pn,
(b) i" = arg max| ;| QM Qrn =IandRp is upper triangular.
(c) yih= y{}r1+ Oin (€) zrn = [zrn-1;2"]
(d) rM=r"1_— @nlin (f) N =rh-1_ an
3. Output:r",y" 3. ymn= REnlzrn

The computational bottle neck of this algorithm is the re- 4. Output:r",y"

quired matrix multiplication®™r", however, if the erroe™  \wherez" — q'x. q is defined below. There are several im-
only changes locally, more efficient updates are possifile [2portant computational tricks to be used when implementing
Furthermore, if the dictionarg is the union of orthogonal  the above algorithm. The QR factorisation in step 2.d) can be
dictionaries for which fast transforms are available, tiés  solved iteratively using a variety of methods and normally a
multiplication can be implemented efficiently [4]. In this {5rm of the Modified Gram-Schmidt procedure is useth

case, the search for the maximum correlation in step 2.0) igerationn both Qrn andRrn are updated using:
often more costly and efficient search strategies should be

used [4].

Orthogonal Matching Pursuit [3], [6] differs from Match-
ing Pursuit in that in each iteratioy is calculated by pro-
jecting the sighak orthogonally onto all selected atoms. Or- and )
thogonal Matching Pursuit therefore calculates the best si Qrn = [Qro-1:d); (5)
nal approximation possible with these atoms. This benefivhere q is such that: Qf. ,q = O,spar{an,l,q} =

comes at the cost of the orthogonal projection. The orthogospar(qarn} and||ql|2 = 1. Finally, the calculation ofrn

R n-1 QTn, qqn .
R n = r r 1 ; 4
] 0 Jal} *)

nal Matching Pursuit algorithm is: in 3) can be done efficiently using back-substitution.

1. Initialiser® =x,y?=0,Mr"= 0o

2. forn= 1;n:= n+ 1 till stopping criterion is met 4.2 Orthogonal Matching Pursuit using Directional Up-
(a) on = (DTI‘n dates
(b) i" = arg max| | Orthogonal Matching Pursuit can also be implemented using
() MM =rr-1yjn a form of directional update. In each iteration, we calaulat

S o _
d) y" = <D|tnx a directionds and a step-size" and update :

() r"=x—y" yPo = yPat+adf. (6)
3. Output:r", y"
Here the dagger t indicates the Moore-Penrose pseudg;;
inverse.

It was shown by Pati et al. in [3] that we can solve the

hogonal Matching Pursuit problem by using the direction
dn _ _GFnl,lq)rnfl(ﬂ” . (7)

4. TRADITIONAL IMPLEMENTATIONS OF m= 1 ’

ORTHOGONAL MATCHING PURSUIT

. , _ o where Grn1 = ®f, ;®rn1. The step size is thea" =
Calculating the pseudo-inverse in each iteration of orthog On/(1—aloT . G-1 @ Note that th i i
nal Matching Pursuit is costly and faster strategies aréd-ava ~"/ (1 = @ ®rn1Gras ®@ro-1¢an). Note that the matrix in-
able. Here we mention two approaches, one based on QY€rse can be updated efficiently in each iteration using the
factorisation and one, based on iterative updates of the r&/ock matrix inversion formula [3].

quired matrix inverse. 1. Initialiser® = x,y? =0, = ¢
2. forn=1;n:= n+ 1till stopping criterion is met
4.1 Orthogonal Matching Pursuit by QR Factorisation (@ O"=Tr"

Currently, the most efficient implementation of orthogonal  (b) i" = arg max|j|
Matching Pursuit is based on QR factorisation [4]. In this  (c) M =r""1yi"

implementation the sub-dictionafyrn is factorised as fol- (d) updateGFnl
lows: (e) calculatedrn

®rn = QroRrn, @) (f) calculatea”
whereQrn € RM*" is a unitary matrix, i.e.Q[Qrn is the (@) yP =yl t+and?,
identity matrix andRn is upper-triangular. With this fac- (h) " = "1 adn
torisation we can write the-term approximationgrn as: r

3. Output:r", y"

Xrn = @royrn = QroRroyre. (3) 1The normal Modified Gram-Schmidt method orthogonaliseseéicted

_ P ; ; elements and at the same time ensures that a copy of the eoteskeEle-
If we letzrn = Rrnyrn, then a very efficientimplementation ments is also orthogonalised to all selected elements. cdrisbe costly.

of orthogonal Matching Pursuit does not need to calculat@ taster implementation orthogonalises new elements onfyecthey are
yrn in each iteration, i.e. the algorithm becomes: selected [4].



5. CONJUGATE GRADIENT IMPLEMENTATION select a further atom from the dictionary and increase the

OF ORTHOGONAL MATCHING PURSUIT dimension by one. If tha— 1 previous update directions are
Grn conjugate, then, by the above theorem, we only require
one more conjugate direction and step-size to exactly solve
"hen dimensional problem.

: o . To show that all the previou&n-1-conjugate directions
The conjugate direction method [7, Section 10.2], [8, -coni L ; ~
Section 16.4] is similar to the gradient descent algorithmare alsdGrn-conjugate (note the different subscripts), we de

however, it is guaranteed to solve quadratic optimisatioﬁIne the matrlxD?n}l as the matrix containing all conjugate
problems inN steps, wheré\ is the dimension of the prob- update directions from iteratiom— 1 and the matriXD?ﬁl
lem. In general, let us assume we want to minimise 40 be the same matrix but with an additional row of zeros
quadratic function, which can be written éyT Gy—-b'y. at '[heT bottom. Then in the definition &rn-conjugacy, i.e.
This 55 eqqivalentlr)]/ tg sollvir|1g}y =b overg. Tré(_e cor_l(jjtrjn— Dt GrDP ! the last row and column ofirn are mul-
ate direction method calculates a new update directiom sugc. . PRI n-17 n-1
tghat the new direction i§x-conjugate to théJ previously cho- %plle(j by zeros, which implies thaDr,; Grn2Dryy =
sen directions. This means that in i@ iteration the conju- Dpﬁl GrnDpﬁl-

Instead of calculating the update direction as in equafipn (
we here derive a different method based on the idea of co
jugate directions.

gate directiord” satisfies: It therefore remains to calculate a single conjugate di-
rection in each iteration. Due t&n-conjugacy in thent"
d"cd =0 8) iteration, the new direction has to satisfy the followingheo
straint:
1T
for all k # n. See [7, Section 10.2] and [8, Section 16.4] for Dt Grodfa =0 (12)

further details.

In iterationn of the orthogonal Matching Pursuit algo-
rithm we need to minimise the quadratic cost-functiomin
unknowns:

In stepn—1, assumeg ™" to be the projection onto the ele-
ments of®rn_1, then each new direction can be expressed
as a combination of all previously chosen directions and the
current gradientirn [7, Section 10.2], i.e. we expres,
||X — ®rnypn ”% 9) as: S$
The dimensiom of the cost function in equation (9) changes df = boOrn + D 'b. (13)
in each iteration. Let us use the notatnif:h to denote the  without loss of generality we can daf= 1. Pre-multiplying
k”.‘ conjugate direction, where the subscript reminds us thajy nglgrn and using thearn-conjugacy then leads to the
this vector is n dimensional. In the" notation,yrn is an  n— 1 constraints:
n-dimensional sub-vector ¢f, which is updated in direction
df». This is equivalent to updating using a directional vec- DP;lTGrn(Drn +DNhb)=0 (14)
tor d" of dimensionN, with all elements zero apart from the
element indexed by". Similarly, the previous update di- from which we can write
rectionsdl‘fk can be thought of as higher dimensional update .7 L1 T

_ n— n—1\— n—
directionsdk, that are only non-zero at the indexes associ- b=—(Dra™ GroDpa ™) (Dra ™ Grolr). (15)
ated withr'¥,

With this notation we can state the conjugate directio
Theorem [8, Theorem 16.2] as:

{\gain usingGrna-conjugacy we find thaDy 'GrDM is
diagonal so that the conjugate direction can be calculated
without matrix inversion.

Theorem 1 [8, Theorem 16.2] Lefdl,, dz,,...,dMN] be Note that in the standard conjugate gradient algorithm [7,
any set of non—zerGrn—coqjugate vectors, then the solution Section 10.2], [8, Section 16.4] each new update direction
to the problenGrnyrn = Pprax is can be calculated as a combination of the current gradient

and the previous update direction alone, i.e. in the stahdar
. Nk conjugate gradient algorithm, all but the last conjugate up
Yrn = Z a'drn, (10)  date direction turn out to b& conjugate to the current gra-
k=1 dient such thab in equation (15) has only a single non-zero
element. Unfortunately, in the context of orthogonal Match
ing Pursuit, the changing dimensionality destroys thigppro
T K erty so that we have to take account of all previous update
gk T Pridrn (11) directions in each step.
diﬁ,Grden’ We call this algorithm Conjugate Gradient Pursuit
(CGP), which can be summarised as:

with a step-size of:

whererk = x — @ (SKtaldly) . 1. Initialise:r® =x,y°=0,r%= 0o

2. forn=1;n:=n+ 1till stopping criterion is met
Note that the step-siz only depends on the firkt— 1 step- (@ O"=Tr"
sizes and the firdt— 1 conjugate-directions so thgf, can (b) i" = arg max|0j|

be approx[ma_ted itera_ltively by calculating a new direction () I =rn-1yin
and step-size in each iteration. 4 ifn—1
In the first iteration of orthogonal Matching Pursuit we (@) ifn=
X . . . -di =1
are dealing with a one dimensional problem and we have a r
single trivial direction and step-size. In th& iteration, we (e) ifn#£1



b=~ (D} ¥ GraDP ) HDR Y Grolln)
- d", = Orn — Db

(f) Dffa = DY dh]

(@) ¢ = Opnd},

(h) a"=r" c”/(cnT c")

(|) yPn = yPEl + andpn

(J) = I.nfl —_ach

3. Output:r",y"

Note that in the calculation db the productDP;lGrn

can be updated recursively by adding a single new 1 n1 i )
row and column in each iteration. Note also thatWhere®rndr,” = c" " has been evaluated in the previous

(DP;—ZlGrnleP;—Zl)il and (D!1GrDY) 1 are equal iteration to determine the step siaé and the same is true
apart from a single additional value added in each iteratiorfO" the denominator, which is nothing else than the product
This value is(cnflT 1) used in step 2.h) of iteratiom— 1 1t _c”*l calculated in the previous iteration. Therefore, the
and does not have to be recalculated. algorithm uses the same computations as Matching Pursuit,
with the addition of two more matrix vector multiplication,
one to evaluatbe; and one to evaluate the step-siZe

The optimal step-size can also be easily calculated as [7, pp
521]: . .
an:rn Cn/(cn cn)’

wherec" is the vectok" = ®rndfn.

The update direction is not guaranteed to Gen-
conjugate to all previous update directions, however, we no
only require a single vector to be kept in memory between
iterations. Furthermore:

(19)

(d Y Grodlah) = (Opd™ )T (Ornd Y (20)

6. APPROXIMATING ORTHOGONAL MATCHING
PURSUIT USING DIRECTIONAL UPDATES 62 Using the Gradient Direction

The proposed conjugate direction method has a similar COMBne further approximation and simplification could be made
putational complexity to the QR based orthogonal Matching,, setingh, — 0 so that only a single additional matrix mul-
Pursuit implementation and apart from a possibly better st&;jation is required compared to Matching Pursuit. This
bility as indicated in the first experiment below, does notyaihq is then a gradient descent procedure we call Gradi-

offer any advantages. However, it allows the developmers p\,rsyjit (GP). The update direction is now simply chosen
of approximations to the conjugate direction that: 1) do not[0 be the current gradiefitrn, i.e

require the storage of different matrices and; 2) do not re-
quire the multiplication by matrices other thén The price

we pay for this is that we do not solve orthogonal Matching
Pursuit exactly. The two directional optimisation stra#sg The step size can also be calculated as in equation (19).
proposed below can however easily be used several times in

each Matching Pursuit iteration to get better approxinmtio 6.3 Approximate orthogonal Matching Pursuit Algo-

to orthogonal Matching Pursuit. This naturally comes at theithm

additional cost of multiple calculations of the requirediafe
directions and step-sizes.

dPn = Opn. (21)

The approximate orthogonal Matching Pursuit algorithms
are then:

6.1 Using an Approximated Conjugate Direction 1. Initialise:r® = x,y° =0, =
2. forn=1;n:=n+ 1till stopping criterion is met

As stressed above, the changing dimensionality of the prob- n Ton
lem makes it necessary to take account of all previous up- (@) O"=o'r

date directions in the conjugate direction algorithm. If we
cannot store all previous update directions we can neverthe
less calculate an update direction thaillgn-conjugate to
only a limited number of previous update directions. We will
call this approach Approximate Conjugate Gradient Pursuit
(ACGP). Let us here derive this approximate conjugate di-
rection method by only considering a single previous update
direction.

In iterationn of the algorithm we require the new update
direction to be a linear combination of the previous update
direction and the current gradient direction, i.e. we clal@
the new direction as:

dPn = boOpn + d Yoy, (16)
We again sebg = 1. To calculatéy; we then enforc&n-
conjugacy with the previous update direction, which leads t

(b) i" = arg max| |
(c) rM=rn"tyin
(d)ifn=1
- d%l =1
(e) ifn#£1
- for the approximate conjugate direction method:
by = —c™ 1 dpn Drk/(c”’lT c" 1)
for the gradient descent method
by=0
- dPn = — bldpﬁl
(f) Cn = (D[‘ndPn
(9) a=1"c"/(c" ")
(h) yf =yt +a'dMh
(i) " =rh-1_gnen

the constraint:

A" Gro(Opn + d%oy) = 0 (17)
from which we get
by = —(d%Y Grd% ) (A GrOp). (18)

3. Output:r", y"

7. EXPERIMENTAL EVALUATION

To give an indication of the stability of the different imple
mentations of exact orthogonal Matching Pursuit we used
ill conditioned dictionaries generated by perturbing agkn



-100F Table 1: Comparison of the methods in terms of computa-
2 tional requirements in iteratiom
£ Algo. | Multiplications of vector by® | Storage
S -150f MP 1 0
i) GP 2 0

ACGP 3 0
-200 : : : : : : CGP 3(+1byDand1byD'G) | D,D'G
0 20 40 60 8 100 120 QR 1(+2 multiplications byQ) | Q,R

Number of non-zero elements

Figure 1: Stability analysis. Matrix inverse based [3]pased method are often too high. The advantage of the pro-
(dashed), QR based (dash-dotted) and conjugate directigysed conjugate gradient based method is that it allowed us
based (solid) implementation of OMP for a dictionary with 4 jnroduce two new directional update schemes that approx
condition number of 3 1CF. imate the conjugate update direction. These do not require
additional storage and can be implemented very efficiently.
The gradient based method only requires the additional
evaluation of the step size, while the approximation to the
conjugate direction involves one further matrix vector mul
tiplication. Typically used over-complete dictionariee a

3 » T unions of transforms for which fast algorithms are ava#abl
£ —60} | — — — Matching Pursuit so that multiplications involving the dictionary can be leva
S . — . — . Gradient Descent Pursuit g uated much faster than general matrix multiplications. The
w -gof Approx. Conjugate Direction E computational cost in terms of multiplications of vectortw
i , : the dictionary and additional storage is summarised in ta-
-100r | -~~~ Orthogonal Matching Pursui . ble 1 for the Matching Pursuit (MP), the Gradient Pursuit
120 ‘ ‘ ‘ ‘ ‘ L (GP), the Approximate Conjugate Gradient Pursuit (ACGP),
0 20 40 60 80 100 120 Conjugate Gradient Pursuit (CGP) and QR based orthogo-
Number of non-zero elements nal Matching Pursuit. Note that the last two algorithms also

require general vector matrix multiplications as givenha t

Figure 2: Comparison between MP (dashed), CGP (dottedparenthesis.
the GP (dash dotted) and ACGP (solid). Data averaged over
1 000 randomly generated signals (see text). REFERENCES
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