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Abstract. Separation of underdetermined mixtures is an important prob-
lem in signal processing that has attracted a great deal of attention over
the years. Prior knowledge is required to solve such problems and one of
the most common forms of structure exploited is sparsity.
Another central problem in signal processing is sampling. Recently, it
has been shown that it is possible to sample well below the Nyquist limit
whenever the signal has additional structure. This theory is known as
compressed sensing or compressive sampling and a wealth of theoretical
insight has been gained for signals that permit a sparse representation.
In this paper we point out several similarities between compressed sens-
ing and source separation. We here mainly assume that the mixing sys-
tem is known, i.e. we do not study blind source separation. With a par-
ticular view towards source separation, we extend some of the results in
compressed sensing to more general overcomplete sparse representations
and study the sensitivity of the solution to errors in the mixing system.

1 Compressed Sensing

Compressed sensing or compressive sampling is a new emerging technique in
signal processing, coding and information theory. For a good place of departure
see for example [1] and [2]. Assume that a signal y is to be measured. In general
y is assumed to be a function defined on a continuous domain, however, for
the discussion here it can be assumed to be a finite vector, i.e. y ∈ R

Ny say.
In a standard DSP textbook we learn that one has to sample a function on a
continuous domain at least at its Nyquist rate. However, assume that we know
that y has a certain structure, for example we assume that y can be expressed
as

y = Φs, (1)

where Φ ∈ R
Ny×Ns and where we allow Ns ≥ Ny, i.e. we allow Φs to be an

overcomplete representation of y. Crucially, we assume s to be sparse, i.e. we
assume that only a small number of elements in s are non-zero or, more generally,
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that most of the energy in s is concentrated in a few coefficients. It has recently
been shown that, if a signal has such a sparse representation, then it is possible
to take less samples (or measurements) from the signal than would be suggested
by the Nyquist limit. Furthermore, one is then often still able to reconstruct the
original signal using convex optimisation techniques [1] and [2].

The simplest scenario are measurements taken as follows:

x = My, (2)

where x ∈ R
Nx with Nx < Ny. Extensions to noisy measurements can be made

[2], i.e. one can consider the problem of approximating y given a noisy measure-
ment:

x̃ = x + e = My + e. (3)

The ability to reconstruct the original signal relies heavily on the structure
of y and different conditions have been derived under which one can exactly or
approximately recover y. For example, if y = Φs and s has only a small number
of non-zero elements, then linear programming can exactly recover y if enough
measurements have been taken. Similar results have been derived in the case
where s is not exactly sparse, but where the ordered coefficients in s decay with
a power law. In this case y can be recovered up to some small error. We give
examples of these theorems below. More details can be found in for example [2]
and the references therein.

2 Relationship to Source Separations

Sparsity has also often been exploited for source separation. In particular, the
problem of underdetermined blind source separation has been solved using the
fact that an orthogonal transform can often be found in which the data is sparse
[3] [4] [5] [6]. More general, possibly over-complete dictionaries have been used
for source separation in [7].

Let us assume a quite general source separation scenario. A set of sources,
say g1,g2, . . . , each represented in a column vector, are collected into a matrix

G = [g1 g2 . . .]
T

(4)

and similarly, the set of observations f1, f2, . . . are gathered in a matrix F. The
relationship between the sources G and the observations F is then modelled by
a general linear operator A:

F = A(G). (5)

Note that this operator does not have to be a matrix and can also represent
for example convolutions, so that the above model incorporates a wide range of
source separation problems.

The connection to compressive sampling becomes evident if instead of col-
lecting the sources and observations in a matrix, we interleave them into vectors
as:

x = [f1[1] f2[1] . . . f1[2] f2[2] . . .]T (6)



and

y = [g1[1] g2[1] . . . g1[2] g2[2] . . .]
T

. (7)

We further assume that the operator A can be expressed in matrix form M so
that the mixing system becomes:

x = My, (8)

which is exactly the compressive sampling measurement equation1.

If we have more sources g than observations f , where the length of each
observation and each source is assumed to be equal, then we have less measure-
ments than samples in y. We therefore require knowledge of additional structure
if we want to be able to (approximately) reconstruct y. We can, for example,
assume the existence of a sparse representation of y of the form y = Φs, where
s is sparse. Note that we do not assume that Φ is an orthogonal transform and
explicitly allow Φ to be overcomplete, i.e. to have more columns than rows.

Let us look at a simple example of an instantaneous mixture. In this case, A

is the Nf × Ng mixing matrix and the matrix M becomes matrix diagonal:

M =











A 0 · · · 0

0 A · · · 0
...

. . .

0 0 · · · A











, (9)

Where 0 is a Nf × Ng matrix of zeros. Similarly, assume a convolutive model,
in which the impulse responses, say h1,1,h2,1,h3,1 and h1,2,h2,2,h3,2 and so on
are interleaved into the matrix H as follows:

H =







h1,1[n] h2,1[n] h3,1[n] h1,1[n − 1] · · ·
h1,2[n] h2,2[n] h3,2[n] h1,2[n − 1] · · ·

...






. (10)

The measuring matrix then becomes:

M =











H · · ·0
0 H · · ·0
...

. . .

0 0 · · ·H











, (11)

where again 0 is a Nf × Ng matrix of zeros. Also, depending on boundary
assumptions, the first and last rows of M might only contain part of the matrix
H.

1 We could have alternatively stacked the vectors f1, f2, . . . (and/or g1,g2, . . . ) on top
of each other to produce a permutation of the above model.



3 Theoretic Results

The source separation problem is equivalent to the decoding problem faced in
compressive sampling and theoretical results from the compressive sampling lit-
erature therefore also apply to the source separation problem. However, in com-
pressive sampling, the measurement matrix M can often be ‘designed’ to fulfil
certain conditions2. Furthermore, in the current compressive sampling literature,
Φ is normally assumed to be the identity matrix or an orthogonal transform.
In source separation, the measuring system is not normally at our control. Fur-
thermore, orthogonal transform are often not available to sufficiently ‘sparsify’
many signals of interest.

In this paper we address these problems and extend several results from the
compressed sensing literature to more general sparse representations. We start
by reviewing some of the important results on compressed sensing [8], which
we here write in terms of the m-restricted isometry condition of the matrix
P = MΦ.

3.1 m-restricted isometry

For any matrix P and integer m, define the m-restricted isometry δm(P) as the
smallest quantity such that:

(1 − δm(P)) ≤ ‖PΓy‖2
2

‖y‖2
2

≤ (1 + δm(P)), (12)

for all Γ : |Γ | ≤ m and all y. Here |Γ | is a set of indices and PΓ the associated
submatrix of P with all columns removed apart from those with indices in Γ . δm

is then a measure of how much any sub-matrices of P with size m can change the
norm of a vector, hence the name. The quantities (1 − δm(P)) and (1 + δm(P))
can be understood as lower and upper bounds on the squared singular values of
all possible sub-matrices of P with m or less columns.

3.2 Estimation error bounds

As examples of the types of theorems available in the compressive sampling
literature, we here state two of the fundamental results (these can be found in
[2] and references therein), which rely on δm(MΦ) to be small3.

2 ‘Design’ here often means taking a random matrix drawn from certain distributions.
3 Note that Georgiev et al. [9] have also studied a similar problem in relationship to

blind source separation. However, the results in [9] are concerned with identifiability
of both y and A. The theorems given here assume knowledge of A but are stronger
than those in [9] in that they also states that we can use convex optimisation methods
to identify the sources. Furthermore, theorem 2 is valid for more general sources and
does not require the existence of an exact m-term representation.



Theorem 1 (Exact Recovery) Assume that s has a maximum of m non-zero
coefficients and that x = MΦs and that δ2m(MΦ) + δ3m(MΦ) < 1, then the
solution to the linear program :

min ‖ŝ‖, such that x = MΦŝ (13)

recovers the exact representation y = Φs.

A similar result can be derived for noisy observations and a further generali-
sation was derived in [8] for signals for which the original signal is not m-sparse,
but has a power law decay, i.e. the magnitude of the ordered coefficients decays

as |sik
| ≤ Ck− 1

p , where p ≤ 1. In particular, for an i.i.d. Gaussian observation
error with variance σ2, we have:

Theorem 2 (Dantzig selector) Assume that s can be reordered so that |sik
| ≤

ck− 1

p for p ≤1. For some m assume that δ2m(MΦ) + 3δ3m(MΦ) < 1. For
λ =

√
2 log Nx the solution to:

min ‖ŷ‖1 : ‖MT (x − Mŷ)‖∞ ≤ λσ (14)

obeys the bound:

‖s− s̃‖2
2 ≤ C2(log Nx)σpc1− p

2 . (15)

This can be extend trivially to a bound on the error in the signal space:

‖y − ỹ‖2
2 = ‖Φs− Φs̃‖2

2 ≤ C2(log Nx)σpc1−p

2 ‖Φ‖2
2. (16)

3.3 Random mixing conditions

In source separation, the mixing system should be considered independently from
the dictionary Φ in which the signal has a sparse representation. The theorems
above are based on δm(MΦ), which is required to be small. In this and the next
section we derive new results that give insight into this quantity by considering
M and Φ separately.

The first theorem is a slight modification from [10]4 5:

Theorem 3 Assume that M ∈ R
Nx×Ny is a random matrix with columns drawn

uniformly from the unit sphere and let Φ ∈ R
Ny×Ns have restricted isometry

δm(Φ) < 1, then there exists a constant c, such that for m ≤ cNx log(Ns/m):

(1 − δPm
(M)) ≤ ‖MΦΓ s‖2

2

‖Φs‖2
2

≤ (1 + δPm
(M)), (17)

4 Note, that there are a range of other distributions for which this theorem would
hold, see [10] for details.

5 Since the first submission of this manuscript we became aware of the paper [11],
which contains very similar results.



and

(1 − δm(Φ))(1 − δPm
(M)) ≤ ‖MΦΓ s‖2

2

‖s‖2
2

≤ (1 + δPm
(M))(1 + δm(Φ)), (18)

holds with probability

≥ 1 − 2(eNs/m)m(12/δPm
)me−

Nx
2

(δ2

Pm
/8−δ3

m/24). (19)

Proof (Outline). The proof that equation (17) holds is similar to the proof given
in [10] with the only difference that Theorem 5.1 in [10] can be shown to hold for
any m dimensional subspace, and where N in theorem 5.2 in [10] can be replaced
by Ns. The restricted isometry in equation (18) then follows by bounding ||Φs||22
from above and below using the restricted isometry (1 − δm(Φ)) ≤ ||Φs||22 ≤
(1 + δm(Φ)).

Therefore, for any dictionary Φ with δm(Φ) < 1 and for M sampled uniformly
from the unit sphere, δm(MΦ) ≤ δm(Φ) + δPm

(M) + δm(Φ)δPm
(M) with high

probability, whenever m ≤ CNx/ log(Ns/Nx).

3.4 Non-random mixing matrix conditions

Unfortunately, theorem 3 assumes randomly generated mixing systems, which
is rather restrictive. We therefore derive conditions that relate the measurement
matrix M , the dictionary Φ and δm(MΦ).

To bound δm(MΦ) we define the (to our knowledge novel) concept of M -
coherence:

µM(Φ) = max
i,j:i6=j

|φT
i MTMφj |. (20)

This quantity measures the coherence in the dictionary as ‘seen through’ the
measuring matrix. We also need the quantities:

amin = min
i

‖Mφi‖2
2 and amax = max

i
‖Mφi‖2

2, (21)

which measure how much the measuring matrix can deform elements of the dic-
tionary. We assume that amin ≥ mµM(Φ), then by the Gersgorin disk theorem
for the eigenvalues of ΦΓ MTMΦΓ , we find that all squared singular values σ2

of the matrix MΦΓ with |Γ | ≤ m are bounded by:

amin − mµM(Φ) ≤ σ2 ≤ amax + mµM(Φ). (22)

We therefore have the bound:

amin − mµM(Φ) ≤ ‖MΦΓ s‖2
2

‖s‖2
2

≤ amax + mµM(Φ). (23)

Using a = max{amax − 1, 1 − amin} we have6 the bound on δm(MΦ) of

δm(MΦ) ≤ a + mµM(Φ), (24)

which is in terms of quantities that are easy to determine for a given dictionary
Φ and measurement matrix M.
6 Note that we have the bound ‖M‖2 ≥ amax ≥ amin ≥ 0.



3.5 Sensitivity to errors in M

In most source separation applications the mixing system is not given a priori
and has to be estimated. This leads to the question of robustness of the method
to errors in the estimation of the measuring matrix M.

Assume we have an estimated mixing system M̃ = M + N and estimated
sources s̃ such that x̃ = M̃Φs̃ and such that s̃ is supported on m̃ elements. Also
assume that x = MΦs is the true generating system with s supported on m
elements. Further assume that ‖x̃− x‖2 ≤ 2ǫ.

If δm+m̃(M̃Φ) < 1, then we have the bound:

‖y − ỹ‖2 ≤ ‖M̃Φs− M̃Φs̃‖2‖Φ‖2
√

1 − δm+m̃(M̃Φ)
. (25)

Replacing M̃Φs with MΦs+NΦs and using ‖MΦs−M̃Φs̃‖ ≤ 2ǫ together with
the triangle inequality, we get the bound:

‖y − ỹ‖2 ≤ 2ǫ + ‖Ny‖2‖Φ‖2
√

1 − δm+m̃(M̃Φ)
≤ 2ǫ + ‖N‖2‖Φ‖2‖y‖2

√

1 − δm+m̃(M̃Φ)
. (26)

4 Discussion and Conclusion

Underdetermined mixtures are a form of compressive sampling. Source separa-
tion is therefore equivalent to the decoding problem faced in compressive sam-
pling. This equivalence opens up many new lines of enquiry, both in compressive
sampling and in source separation.

On the one hand, as done in this paper, results form compressive sampling
shed new insight into the source separation problem. For example, theorems 1
and 2 state that for signals with a sparse underlying representation, whether ex-
act, or with decaying coefficients, convex optimisation techniques can be used to
recover or approximate the original signal from a lower dimensional observation.
Furthermore, results from compressive sampling give bounds on the estimation
error for sources that have a sparse representation with decaying coefficients.
The error is a function of this coefficient decay and properties of the matrix
mapping the sparse representation into the mixed domain. In the source sepa-
ration literature, linear programming techniques have been a common approach
[3] [4] [7] and the new theory gives additional justification for the application
of these techniques and, what is more, provides estimation bounds for certain
problems.

The main novel contribution of this paper was an extension of recent results
from compressive sampling to allow for more general, possibly over-complete dic-
tionaries for the sparse representation. In source separation, the mixing matrix
is in general unrelated to the dictionary and the main contribution of this paper
was to derive conditions on the dictionary, the mixing system and their inter-
action that allow the application of standard compressive sampling results to



the more general source separation problem. In particular we have disentangled
the dictionary and the measurement matrix and could shown that for randomly
generated mixing systems, the required conditions hold with high probability.
For more general mixing systems, we have presented bounds on this condition,
which are functions of simple to establish properties of the mixing system, the
overcomplete dictionary and their interaction. If the mixing system has to be
estimated as in many source separation settings, errors in this estimate will in-
fluence the estimates of the sources. The theory in subsection 3.5 gives bounds
on this error.

Not only does source separation benefit from progress made in compressive
sampling, compressive sampling has also much to learn from the extensive work
done on source separation. For example, in source separation, the mixing system
is not known in general and has to be estimated together with the sources. Many
different estimation techniques have therefore been developed in the source sepa-
ration community able to estimate the mixing system. This suggests an extension
of compressive sampling to blind compressive sampling (BCS). Different scenar-
ios seem possible depending on the application and, in our notation, either Φ or
M (or both) might be unknown or known only approximately. Preliminary work
in this direction has shown encouraging first results and more formal studies are
currently undertaken.
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