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Abstract

Compressed sensing is a technique to sample compressible signals below the Nyquist

rate, whilst still allowing near optimal reconstruction of the signal. In this paper

we present a theoretical analysis of the iterative hard thresholding algorithm when

applied to the compressed sensing recovery problem. We show that the algorithm

has the following properties (made more precise in the main text of the paper)

• It gives near-optimal error guarantees.

• It is robust to observation noise.

• It succeeds with a minimum number of observations.

• It can be used with any sampling operator for which the operator and its adjoint

can be computed.

• The memory requirement is linear in the problem size.
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• Its computational complexity per iteration is of the same order as the application

of the measurement operator or its adjoint.

• It requires a fixed number of iterations depending only on the logarithm of a form

of signal to noise ratio of the signal.

• Its performance guarantees are uniform in that they only depend on properties

of the sampling operator and signal sparsity.

Key words: Algorithms, Compressed Sensing, Sparse Inverse Problem, Signal

Recovery, Iterative Hard Thresholding

PACS: Reconstruction algorithms

1 Introduction

For more than fifty years, the Nyquist-Shannon [16] [18] sampling theorem

was generally used as the foundation of signal acquisition systems. Using this

theory, it was a commonly held belief that signals have to be sampled at twice

the signal bandwidth. Whilst this is true for general band-limited signals, this

theory does not account for additional signal structures that might be known

a priori. The recently emerging field of compressed sensing, [8], [4], [5], [3]

and [7] and the related theory of signals with a finite rate of innovations [20],
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start from another premise. In compressed sensing, signals are assumed to be

(approximately) sparse in some transform domain. This sparsity constraint

significantly reduces the size of the set of possible signals compared to the

signal space dimension.

Instead of taking samples at the Nyquist rate, compressed sensing uses linear

sampling operators that map the signal into a small (compared to the Nyquist

rate) dimensional space, whilst reconstruction of the signal is highly non-

linear. One of the important contributions of the seminal work by Candes,

Romberg, Tao [4], [5], [3] and Donoho [7], was to show that linear programming

algorithms can be used under certain conditions on the sampling operator to

reconstruct the original signal with high accuracy.

Another set of algorithms, which could be shown to efficiently reconstruct

signals from compressed sensing observations are greedy methods. A by now

traditional approach is Orthogonal Matching Pursuit [10], which was analysed

as a reconstruction algorithm for compressed sensing in [19]. Better theoret-

ical properties were recently proven for a regularised Orthogonal Matching

Pursuit algorithm [15] [14]. Even more recently, the Compressive Sampling

Matching Pursuit (CoSaMP) [13] and the nearly identical Subspace Pursuit

[6] algorithms were introduced and analysed for compressed sensing signal

reconstruction. Of all of these methods, CoSaMP currently offers the most

comprehensive set of theoretic performance guarantees. It works for general

sampling operators, is robust against noise and the performance is uniform in

that it only depends on a property of the sampling operator and the sparsity

of the signal, but not on the size of the non-zero signal coefficients. Further-

more, it requires minimal storage and computations and works with (up to a

constant) a minimal number of observations.
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In a previous paper [1], iterative hard thresholding algorithms were studied. In

particular, their convergence to fixed points of ℓ0 regularised (or constrained)

cost functions could be proven. In this paper, it is shown that one of these

algorithms (termed from now on IHTs) has similar performance guarantees

to those of CoSaMP.

1.1 Paper Overview

Section 2 starts out with a definition of sparse signal models and a statement

of the compressed sensing problem. In Section 3, we then discuss an iterative

hard thresholding algorithm. The rest of this paper shows that this algorithm

is able to recover, with high accuracy, signals from compressed sensing ob-

servations. This result is formally stated in the theorem and corollary in the

first subsection of Section 4. The rest of Section 4 is devoted to the proof of

this theorem and its corollary. In fact, the derived result is near-optimal as

shown in Section 5. Section 6 takes a closer look at a stopping criterion for

the algorithm, which guarantees a certain estimation accuracy. The results of

this paper are similar to those for the CoSaMP algorithm of [13] and a more

detailed comparison is given in Section 7.

1.2 Notation

The following notation will be used in this paper. y is an M-dimensional real or

complex vector. x is an N dimensional real or complex vector. Φ will denote

an M × N real or complex matrix, whose transpose (hermitian transpose)

will be denoted by ΦT . Many of the arguments in this paper will use sub-
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matrices and sub-vectors. The letters Γ, B and Λ will denote sets of indices

that enumerate the columns in Φ and the elements in the vectors x. Using these

sets as subscripts, e.g., ΦΓ or xΓ, we mean matrices (or vectors) formed by

removing all but those columns (elements) from the matrix (vector) other than

those in the set. Occasionally we also refer to quantities in a given iteration.

Iterations are counted using n or k. For sets, we use the simplified notation

Γn whilst for vectors, the iteration count is given in square brackets x[n].

The following norms are used repeatedly. ‖ · ‖2 is the Euclidean vector norm

or, for matrices, the operator norm from ℓ2 to ℓ2. We will also need the vector

ℓ1 norm ‖ · ‖1. The notation ‖ · ‖0 will denote the number of non-zero elements

in a vector. For a general vector x we use xs to be any of the best s term

approximations to x. The difference between the two will be xr = x−xs. The

support, that is the index set labeling the non-zero elements in xs, is defined

as Γ⋆

s
= supp{xs} and similarly, Γn = supp{x[n]}, where x[n] is the estimation

of x in iteration n. Finally, the set Bn = Γ⋆

s

⋃

Γn is a superset of the support

of the error r[n] = xs − x[n]. Set difference is denoted using · \ ·.

2 Sparsity and Compressed Sensing

A vector is called s-spare if no more than s of its elements have non-zero values.

However, most signals in the real world are not exactly sparse, instead, they

are often well approximated by an s-sparse vector. Such signals are called

approximately sparse. To capture this notion, we let xs be the best s-sparse

approximation to a vector x, that is, any one of the s-sparse vectors that

minimise ‖xs − x‖2.
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2.1 Compressed Sensing

In compressed sensing the signal of interest is an N < ∞ dimensional real or

complex vector x assumed to be approximately sparse. Samples are then taken

using a linear mapping Φ into an M dimensional real or complex observation

space. In matrix notation, the observed samples y are

y = Φx + e. (1)

Here, Φ is the linear sampling operator and e models possible observation

noise due to, for example, sensor noise or quantisation errors in digital systems,

whose norm is written as ‖e‖2 = ǫ.

Here, two main problems have to be addressed. The first problem, not stud-

ied in detail in this paper, is to design measurement systems Φ that possess

certain desirable properties (such as the restricted isometry property of the

next subsection), which allow for an efficient estimation of x. The interested

reader is referred to the extensive literature, such as [4], [5], [3], [7], [17], [11],

[12], [13] and references therein. The second problem, which is the focus of

this paper, is the study of concrete algorithms for the efficient estimation of

x given only y and Φ.

2.2 The Restricted Isometry Property

The analysis of algorithms for compressed sensing relies heavily on the follow-

ing property of the observation matrix Φ. A matrix Φ satisfies the Restricted

Isometry Property (RIP) [4] if

(1 − δs)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δs)‖x‖2
2 (2)
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for all s-sparse x and some δs < 1. The restricted isometry constant δs is

defined as the smallest constant for which this property holds for all s-sparse

vectors x.

The following properties of the restricted isometry constant are at the heart

of this paper. Proofs can be found in, for example, [13].

Lemma 1 For all index sets Γ and all Φ for which the RIP holds with s = |Γ|

‖ΦT

Γy‖2 ≤
√

1 + δ|Γ|‖y‖2, (3)

(1 − δ|Γ|)‖xΓ‖2 ≤ ‖ΦT

ΓΦΓxΓ‖2 ≤ (1 + δ|Γ|)‖xΓ‖2 (4)

and

‖(I − ΦT

ΓΦΓ)xΓ‖2 ≤ δ|Γ|‖xΓ‖2. (5)

Furthermore, for two disjoint sets Γ and Λ (i.e. Γ
⋂

Λ = ∅) and all Φ for

which the RIP holds with s = |Γ⋃Λ|

‖ΦT

ΓΦΛxΛ‖2 ≤ δs‖xΛ‖2. (6)

3 Iterative Hard Thresholding

3.1 Definition of the Algorithm

In [1], we discussed the following Iterative Hard Thresholding algorithm (IHTs)

previously used in [9]. Let x[0] = 0 and use the iteration

x[n+1] = Hs(x
[n] + ΦT (y − Φx[n])), (7)

where Hs(a) is the non-linear operator that sets all but the largest (in mag-

nitude) s elements of a to zero. If there is no unique such set, a set can be
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selected either randomly or based on a predefined ordering of the elements.

The convergence of this algorithm was proven in [1] under the condition that

‖Φ‖2 < 1. In this case, the above algorithm converges to a local minimum of

the optimisation problem

min
x

‖y − Φx‖2
2 subject to ‖x‖0 ≤ s. (8)

Note that a more general form of the above algorithm could include an addi-

tional step size µ > 0, that is, we could use

x[n+1] = Hs(x
[n] + µΦT (y − Φx[n])). (9)

If we use µ 6= 1, the conditions on Φ derived below will change. For nota-

tional convenience, we decided to use µ = 1, however, it is easy to repeat our

arguments for the more general setting µ 6= 1.

3.2 Computational Complexity per Iteration

The iterative hard thresholding algorithm is very simple. It involves the ap-

plication of the operators Φ and ΦT once in each iteration as well as two

vector additions. The operator Hs involves a partial ordering of the elements

of a[n] = x[n] + ΦT (y − Φx[n]) in magnitude. The storage requirements are

small. Apart from storage of y, we only require the storage of the vector a,

which is of length N . Storage of x[n], which has only s-non-zero elements,

requires 2s numbers to be stored.

The computational bottle neck, both in terms of storage and computation

time, is due to the operators Φ and ΦT . If these are general matrices, the

computational complexity and memory requirement is O(MN). For large
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problems, it is common to use structured operators, based for example on

fast Fourier transforms or wavelet transforms, which require substantially less

memory and can often be applied with O(N log M) or even O(N) operations.

In this case, the above algorithm has minimal computational requirements per

iteration. If L is the complexity of applying the operators Φ and ΦT , then the

computational complexity of the algorithm is O(k⋆L), where k⋆ is the total

number of iterations.

4 Iterative Hard Thresholding for Compressed Sensing

In this section we derive the main result of this paper. We show that if δ3s <

1/
√

32, then the iterative hard thresholding algorithm reduces the estimation

error in each iteration and is guaranteed to come within a constant factor

of the best attainable estimation error. In fact, the algorithm needs a fixed

number of iterations, depending only on the logarithm of a form of signal to

noise ratio.

4.1 Digest: The Main Result

The main result of this paper can be formally stated in the following theorem

and corollary.

Theorem 2 Given a noisy observation y = Φx + e, where x is an arbitrary

vector. Let xs be an approximation to x with no more than s non-zero elements

for which ‖x − xs‖2 is minimal. If Φ has restricted isometry property with

δ3s < 1/
√

32, then, at iteration k, IHTs will recover an approximation x[k]
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satisfying

‖x − x[k]‖2 ≤ 2−k‖xs‖2 + 6ǫ̃s. (10)

where

ǫ̃s = ‖x − xs‖2 +
1√
s
‖x − xs‖1 + ‖e‖2 (11)

Furthermore, after at most

k⋆ =

⌈

log2

(

‖xs‖2

ǫ̃s

)⌉

(12)

iterations, IHTs estimates x with accuracy

‖x − x[k⋆]‖2 ≤ 7

[

‖x − xs‖2 +
1√
s
‖x − xs‖1 + ‖e‖2

]

. (13)

For exact sparse signals, we have a slightly better corollary.

Corollary 3 Given a noisy observation y = Φxs + e, where xs is s-sparse. If

Φ has the restricted isometry property with δ3s < 1/
√

32, then, at iteration k,

IHTs will recover an approximation x[k] satisfying

‖xs − x[k]‖2 ≤ 2−k‖xs‖2 + 5‖e‖2. (14)

Furthermore, after at most

k⋆ =

⌈

log2

(

‖xs‖2

‖e‖2

)⌉

(15)

iterations, IHTs estimates x with accuracy

‖xs − x[k⋆]‖2 ≤ 6‖e‖2. (16)

4.2 Discussion of the Main Results

The main theorem states that the algorithm will find an approximation that

comes close to the true vector. However, there is a limit to this. Asymptotically,
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we are only guaranteed to get as close as a multiple of

ǫ̃s = ‖x − xs‖2 +
1√
s
‖x − xs‖1 + ‖e‖2. (17)

The quantity ǫ̃s can be understood as an error term. This error term is com-

posed of two components, the observation error e and the difference between

the signal x and its best s term approximation xs. This makes intuitive sense.

Assume, the observation error is zero and x is s-sparse. In this case, the algo-

rithm is guaranteed (under the conditions of the theorem) to find x exactly.

For exact sparse signals, but with noisy observation, our success in recovering

x is naturally limited by the size of the error. Assuming that x is not s-sparse,

there will be an error between any s-term approximation and x. The closest

we can get to x with any s-sparse approximation is therefore limited by how

well x can be approximated with s-sparse signals.

The overall number of iterations required to achieve a desired accuracy de-

pends on the logarithm of ‖xs‖2

ǫ̃s

. We can think of the quantity ‖xs‖2

ǫ̃s

as a signal

to noise ratio appropriate for sparse signal estimates. This term is large, when-

ever the observation noise is small and the signal x is well approximated by

an s-sparse vector.

4.3 Derivation of the Error Bound

We now turn to the derivation of the main result which is heavily inspired by

the arguments in [13].

The proof uses the following notation

(1) y = Φxs + e,
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(2) r[n] = xs − x[n],

(3) a[n+1] = x[n] + ΦT (y − Φx[n]) = x[n] + ΦT (Φxs + e − Φx[n]),

(4) x[n+1] = Hs(a
[n+1]), where Hs is the hard thresholding operator that keeps

the largest s (in magnitude) elements and sets the other elements to zero.

(5) Γ⋆

s = supp{xs},

(6) Γn = supp{x[n]},

(7) Bn+1 = Γ⋆
s

⋃

Γn+1,

We also require the following two lemmata from [13].

Lemma 4 (Needell and Tropp, Proposition 3.5 in [13]) Suppose the ma-

trix Φ satisfies the RIP ‖Φxs‖2 ≤
√

1 + δs‖xs‖2 for all xs : ‖xs‖0 ≤ s, then

for all vectors x, the following bound holds

‖Φx‖2 ≤
√

1 + δs‖x‖2 +
√

1 + δs

‖x‖1√
s

. (18)

Lemma 5 (Needell and Tropp, lemma 6.1 in [13]) For any x, let xs be

(the/any) best s-term approximation to x. Let xr = x − xs. Let

y = Φx + e = Φxs + Φxr + e = Φxs + ẽ. (19)

If the RIP holds for sparsity s, then the norm of the error ẽ can be bounded

by

‖ẽ‖2 ≤
√

1 + δs‖x − xs‖2 +
√

1 + δs

‖x − xs‖1√
s

+ ‖e‖2 (20)

We start by proving the error bound in Corollary 3.

PROOF. [Proof of the error bound in Corollary 3] Consider the s-sparse

signal xs. In order to deal with the non-linear operator, we proceed as fol-

lows. First we note that the error xs − x[n+1] is supported on the set Bn+1 =
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Γ⋆

s

⋃

Γn+1. The estimation error in iteration k can then be bounded by consid-

ering the effect of the hard thresholding operator, that is, by looking at the

error ‖x[n+1]
Bn+1−a

[n+1]
Bn+1‖2. This is the difference between the thresholded estimate

and the estimate before thresholding (whilst restricting the analysis only to

the support Bn+1 of xs − x[n+1]). Using the triangle inequality, we can write

‖xs − x[n+1]‖2 ≤ ‖xs

Bn+1 − a
[n+1]
Bn+1‖2 + ‖x[n+1]

Bn+1 − a
[n+1]
Bn+1‖2. (21)

By the thresholding operation, x[n+1] is the best s-term approximation to

a
[n+1]
Bn+1 . In particular, it is a better approximation than xs. This implies that

‖x[n+1] − a
[n+1]
Bn+1‖2 ≤ ‖xs − a

[n+1]
Bn+1‖2 and we have

‖xs − x[n+1]‖2 ≤ 2‖xs

Bn+1 − a
[n+1]
Bn+1‖2. (22)

We now expand

a
[n+1]
Bn+1 = x

[n]
Bn+1 + ΦT

Bn+1Φr[n] + ΦT

Bn+1e. (23)

We then have

‖xs − x[n+1]‖2 ≤ 2‖xs

Bn+1 − x
[n]
Bn+1 − ΦT

Bn+1Φr[n] − ΦT

Bn+1e‖2

≤ 2‖r[n]
Bn+1 − ΦT

Bn+1Φr[n]‖2 + 2‖ΦT

Bn+1e‖2

= 2‖(I − ΦT

Bn+1ΦBn+1)r
[n]
Bn+1 − ΦT

Bn+1ΦBn\Bn+1r
[n]
Bn\Bn+1‖2

+2‖ΦT

Bn+1e‖2

≤ 2‖(I − ΦT

Bn+1ΦBn+1)r
[n]
Bn+1‖2

+2‖(ΦT

Bn+1ΦBn\Bn+1)r
[n]
Bn\Bn+1‖2

+2‖ΦT

Bn+1e‖2

Now Bn \Bn+1 is disjoint from Bn+1 and |Bn
⋃

Bn+1| ≤ 3s. We can therefore

use the bounds in (3), (6) and (5) and the fact that δ2s ≤ δ3s

‖r[n+1]‖2 ≤ 2δ2s‖r[n]
Bn+1‖2 + 2δ3s‖r[n]

Bn\Bn+1‖2 + 2
√

1 + δs‖e‖2 (24)

≤ 2δ3s

(

‖r[n]
Bn+1‖2 + ‖r[n]

Bn\Bn+1‖2

)

+ 2
√

1 + δs‖e‖2 (25)
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Furthermore r
[n]
Bn+1 and r

[n]
Bn\Bn+1 are orthogonal so that ‖r[n]

Bn+1‖2+‖r[n]
Bn\Bn+1‖2 ≤

√
2‖r‖2. We therefore have the bound

‖r[n+1]‖2 ≤
√

8δ3s‖r[n]‖2 + 2
√

1 + δs‖e‖2. (26)

If δ3s < 1√
32

, then

‖r[n+1]‖2 < 0.5‖r[n]‖2 + 2.17‖e‖2. (27)

Iterating this relationship, and realising 2 that 2.17(1+0.5+0.25+ · · · ) ≤ 4.34

and that x[0] = 0, we get

‖r[k]‖2 < 2−k‖xs‖2 + 4.34‖e‖2 (28)

This proves Corollary 3.

PROOF. [Proof of the error bound in Theorem 2] To bound the error ‖x −

x[k]‖2 for general x, we first note that

‖x − x[k]‖2 ≤‖xs − x[k]‖2 + ‖x − xs‖2.

(29)

The proof of the main theorem then follows by bounding ‖xs−x[k]‖2 = ‖r[k]‖2

using Corollary 3 with ẽ instead of e and Lemma 5 to bound ‖ẽ‖2, that is

‖r[k]‖2 ≤ 2−k‖xs‖2 + 4.71

[

‖(x − xs)‖2 +
1√
s
‖(x − xs)‖1 + ‖e‖2

]

. (30)

2 Note that we could have chosen any value for δ3s < 1/
√

8 here. As long as

√
8δ3s < 1, the geometric series used to bound the error converges to 1/(1−

√
8δ3s).

However, larger δ3s will lead to worse error bounds.
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4.4 Derivation of the Iteration Count

PROOF. [Proof of the second part of Theorem 2] The first part of Theorem

2 shows that

‖x − x[k]‖2 ≤ 2−k‖xs‖2 + 6ǫ̃s, (31)

where ǫ̃s =
[

‖(x − xs)‖2 + 1√
s
‖(x − xs)‖1 + ‖e‖2

]

. We are therefore guaran-

teed to reduce the error to below any multiple c of ǫ̃s, as long as c > 6. For

example, assume we want to recover ‖x‖ with an error of less than 7ǫ̃s. This

implies that we require that

2−k‖xs‖2 ≤ ǫ̃s (32)

i.e. that

2k ≥ ‖xs‖2

ǫ̃s

, (33)

which in turn implies the second part of the theorem. The proof of the corre-

sponding result in Corollary 3 follows the same argument.

5 Optimality of the Result

The results in this paper are essentially optimal up to the constants. To show

this, we show that the error has to depend on the three terms ‖x−xs‖2,
‖x−x

s‖1√
s

and ‖e‖2, even if we used an oracle estimate. Assume an oracle would give

us the support set of the s largest coefficients in x. Let Φs be the sub-matrix

of Φ containing only those columns associated with the s largest coefficients

in x and assume Φ to have a restricted isometry constant of δs > 0. We

can now write the oracle estimate that would reconstruct the best s-term

approximation as Φ†
s
y, where the † signifies the pseudo inverse.
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The error for such an oracle estimate can be bounded from above as

‖x − Φ†
s
y‖2 = ‖x − xs − Φ†

s
Φ(x − xs) − Φ†

s
e‖2

≤‖x − xs‖2 + ‖Φ†
s
Φ(x − xs)‖2 + ‖Φ†

s
e‖2

≤‖x − xs‖2 + ‖Φ†
s‖2‖Φ(x − xs)‖2

+‖Φ†
s
‖2‖e‖2

≤
(

1 +

√
1 + δs√
1 − δs

)

‖x − xs‖2

+

√
1 + δs√
1 − δs

‖x − xs‖1√
s

+
1√

1 − δs

‖e‖2,

(34)

where the bound on ‖Φ†
s
‖2 can be found in, for example, [13] and where the

bound on ‖Φ(x − xs)‖2 is due to Lemma 4.

Importantly, the same type of bound can be derived to bound the error from

below for some e and x. Because x − xs is orthogonal to Φ†
s
Φ(x − xs) − Φ†

s
e,

we have

‖x − Φ†
sy‖2 = ‖x − xs − Φ†

sΦ(x − xs) − Φ†
se‖2

≥ 1√
2
‖x − xs‖2 +

1√
2
‖Φ†

s
(Φ(x − xs) + e)‖2

≥ 1√
2
‖x − xs‖2 +

√
1 − δs√

2
‖Φ(x − xs) + e‖2

(35)

In particular,we can choose e to be orthogonal to Φ(x − xs). In this case, we

have

‖Φ(x − xs) + e‖2 ≥
1√
2
‖Φ(x − xs)‖2 +

1√
2
‖e‖2.

It remains to show that there are x, such that ‖Φ(x−xs)‖2 ≥ c‖(x−xs)‖1/
√

s.

Let us use the following notation. Let Γ0 be the index set of the largest s
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elements in x, let Γ1 be the index set of the next s largest elements and so on.

For all those x, for which xΓi
= 0 for all i > 1, we have the following trivial

inequality

‖
∑

i≥1

ΦxΓi
‖2 ≥

∑

i≥1

‖ΦxΓi
‖2

so that for these x

‖Φ(x − xs)‖2 = ‖
∑

i≥1

ΦxΓi
‖2

≥
∑

i≥1

‖ΦxΓi
‖2

≥ (1 − δs)
∑

i≥1

‖xΓi
‖2

≥ (1 − δs)√
s

∑

i≥1

‖xΓi
‖1.

From these arguments we see that there are x and e for which the performance

bound in this paper is essentially tight up to the constants, that is, we can

not expect to do substantially better, even if we had additional information

regarding the location of the largest s elements in x.

6 When to Stop

So far, we have given guarantees on the achievable error and a bound on the

total number of iterations to achieve this bound. The algorithm will converge

to these bounds linearly, however, in practice, it is necessary to monitor quan-

tities of the algorithm and decide to stop the algorithm after a finite number

of iterations. From the main result, it is clear that in general, we cannot do

any better than to find an estimate with an error of 6ǫ̃s. The following results

can be used as diagnostics that assess when the algorithm has come close to

this limit.
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A possible stopping criterion is ‖y − Φx[n]‖2 ≤ ǫ. For this criterion, it is

possible to use the same arguments as in appendix A of [13], to derive the

following result.

Lemma 6 Assume that Φ satisfies the RIP with δ3s < 1/
√

32. If at any iter-

ation of IHTs the condition ‖y − Φx[n]‖2 ≤ ǫ holds, then

‖x − x[n]‖2 ≤ 1.11ǫ + 2.41ǫ̃s, (36)

where

ǫ̃s = ‖x − xs‖2 +
1√
s
‖x − xs‖1 + ‖e‖2. (37)

Conversely, if at any iteration of IHTs the condition

‖x − x[n]‖2 ≤ 1.1‖x − x[n]‖2 + 1.11/
√

s‖x − x[n]‖1 + ‖e‖2 (38)

holds, then ‖y − Φx[n]‖2 ≤ ǫ.

This lemma can be used to calculate a stopping criterion for IHTs. For ex-

ample, if we want to estimate ‖x‖2 with accuracy cǫ̃s, we know that we are

done as soon as ‖y − Φx
[n]
2 ‖2 ≤ (c/1.11 − 2)ǫ̃s. Note that in general, IHTs

is only guaranteed to work for c > 6, however, as soon as we observe that

‖y−Φx[n]‖2 ≤ (c/1.11−2) holds for arbitrary c, we know that the estimation

error must be below cǫ̃s.

PROOF. To prove the first part, note that the stopping criterion implies

that

ǫ ≥ ‖Φ(x − x[n]) + e‖2 = ‖Φ(xs − x[n]) + ẽ‖2

≥
√

1 − δ2s‖xs − x[n]‖2 − ‖ẽ‖2,

18



so that

‖xs − x[n]‖2 ≤
ǫ + ‖ẽ‖2√

1 − δ2s

. (39)

Furthermore,

‖x − x[n]‖2 ≤ ‖xs − x[n]‖2 + ‖x − xs‖2, (40)

so that (using the bound on ‖ẽ‖2 from Lemma 5)

‖x − x[n]‖2 ≤
ǫ + ‖ẽ‖2√

1 − δ2s

+ ‖x − xs‖2

≤
ǫ + 2

√
1 + δ2s‖x − xs‖2 +

√
1 + δ2s

1√
s
‖x − xs‖1 + ‖e‖2√

1 − δ2s

.

≤ 1.11ǫ + 2.41ǫ̃s.

This proves the first part of the lemma using δ2s ≤ δ3s < 1/
√

32.

To prove the second part, note that if

‖x − x[n]‖2 ≤
ǫ −

√
1+δs√

s
‖x − x[n]‖1 − ‖e‖2√

1 + δs

(41)

holds, then

ǫ≥
√

1 + δs‖x − x[n]‖2 +

√
1 + δs√

s
‖x − x[n]‖1 + ‖e‖2

≥‖Φ(x − x[n])‖2 + ‖e‖2

≥‖Φ(x − x[n]) + e‖2.

We have here used Lemma 4 to bound ‖Φ(x−x[n])‖2 ≤
√

1 + δs‖(x−x[n])‖2 +

√
1 + δs

1√
s
‖(x − x[n])‖1.

7 Comparison to CoSaMP

In [13] the authors introduced the Compressed Sensing Matching Pursuit

(CoSaMP) algorithm, which offers similar guarantees to the iterative hard
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thresholding approach of this paper. The result for CoSaMP is as follows

Theorem 7 (Needell & Tropp [13]) If Φ has the restricted isometry prop-

erty with δ4s ≤ 0.1, then, at iteration k, CoSaMP will recover an approxima-

tion x[k] satisfying

‖xs − x[k]‖2 ≤ 2−k‖xs‖2 + 15‖e‖2 (42)

if y = Φxs + e for xs s-sparse and

‖x − x[k]‖2 ≤ 2−k‖x‖2 + 20ǫ̃s, (43)

if y = Φx + e for all x.

Two remarks are in order. Firstly, for IHTs, we require δ3s ≤ 0.175, whilst

for CoSaMP, δ4s ≤ 0.1 is required. Note that the IHTs requirement is for δ3s,

whilst CoSaMP has a requirement on δ4s. To further compare these require-

ments, we use corollary 3.4 from [13], which states that for integers a and s,

δas ≤ aδ2s. Therefore, if δ2s ≤ 0.025, the condition for CoSaMP is satisfied,

whilst for IHTs, we have a the condition requiring that δ2s ≤ 0.058.

The theorems derived for CoSaMP have therefore somewhat stricter condi-

tions. Furthermore, the theorem derived here for IHTs guarantees a several

times lower approximation error. For example, in the exact sparse case, IHTs is

guaranteed to calculate an error approaching 5‖e‖2, which should be compared

to the guarantee of 15‖e‖2 for CoSaMP. For general signals, the guarantees

are 6ǫ̃s for IHTs and 20ǫ̃s for CoSaMP.

The number of iterations required for IHTs is logarithmic in the signal to

noise ratio. This means that for noiseless observations, IHTs would require an

infinite number of iterations to reduce the error to zero. This is a well known

20



0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

sparsity K/M

pr
ob

ab
ili

ty
 o

f 
ex

ac
t r

ec
ov

er
ty

Fig. 1. Comparison in terms of exact support recovery between the Iterative Hard

Thresholding algorithm (solid), the CoSaMP algorithm using three conjugate gradi-

ent steps (dash-dotted), the CoSaMP algorithm using exact solutions to the inverse

problem in each iteration (dotted) and the ℓ1 based method (dashed).

property of algorithms that use updates of the form x[n] + ΦT (y − Φx[n]).

CoSaMP on the other hand is guaranteed to estimate x with precision 20ǫ̃s

in at most 6(s + 1) iterations, however, to achieve this, CoSaMP requires the

solution to an inverse problem in each iteration, which is costly. IHTs does not

require the exact solution to an inverse problem. If CoSaMP is implemented

using fast partial solutions to the inverse problems, the iteration count guar-

antees become similar to the ones derived here for IHTs.

8 What’s in a Theorem

A word of caution is in order. We have here shown that the Iterative Hard

Thresholding algorithm has theoretical properties, which are comparable to

those of other state of the art algorithms such as CoSaMP and has recovery

guarantees of the same order as ℓ1 based approaches. At a first glance, this

seems to be at odds with previously reported numerical results [1].

To understand this disparity, it has to be realised that the uniform performance
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guarantees derived here for IHTs and elsewhere for CoSaMP and ℓ1 based

methods are worst case bounds, that is, they guarantee the performance of

the algorithms in the worst possible scenario. Numerical studies on the other

hand cannot in general test this worst case behaviour. This is because we

do not in general know what particular signals would be the most difficult

to recover. Numerical experiments instead analyse average behaviour, that is,

they study the recovery of typical signals.

We demonstrate this in Figure 1 where we show the average recovery perfor-

mance of different methods, that is, the empirical probability with which the

methods recover the support of an exact sparse signal. The results were de-

rived by generating Φ ∈ R
128×256 by drawing its column vectors uniformly from

the unit sphere and by generating exact s-sparse signals where the non-zero

elements were i.i.d. Gaussian. We then used the Iterative Hard Threshold-

ing algorithm, two versions of the CoSaMP algorithm and an ℓ1 minimisation

(min
x
‖x‖1 : Φx = y). The two versions of CoSaMP differed in that in one

version we used an exact solution to the inverse problem in each iteration

whilst in the other version we replaced this exact solution with three conju-

gate gradient iterations as suggested in [13]. Note that Theorem 7 holds for

both of these methods.

As reported before, we observe that the Iterative Hard Thresholding algorithm

(solid line) only recovers very sparse signals, whilst the ℓ1 optimisation based

approach (dashed line) can recover much less sparse signals. Interestingly,

CoSaMP works relatively well when using the implementation based on exact

solutions of the inverse problem, whilst it performs slightly worse than the

Iterative Hard Thresholding approach when using the faster implementation

based on partial solutions of this inverse problem.
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Whilst the theoretical results tell us that if the restricted isometry constant is

below some value, all algorithms will be able to recover exact sparse signals,

the above experiment shows that, in the regime in which the restricted isome-

try constant becomes too large, some algorithms still perform well on average,

whilst others do not. The difference in numerically observed performance be-

tween methods with similar uniform recovery guarantees therefore indicates

that uniform guarantees are not necessarily a good measure to indicate good

average performance.

9 Conclusion

The abstract made eight claims regarding the performance of the iterative

hard thresholding algorithm. Let us here summarise these in somewhat more

detail.

• Error guarantee; We could show that an estimation error of 7‖ẽ‖2 can be

achieved within a finite number of iterations.

• Robustness to noise; We could show that the achievable estimation error

depends linearly on the size of the observation error. Performance therefore

degrades linearly if the noise is increased.

• Minimum number of observations; The requirement on the isometry con-

stant dictates that the number of observations grows linearly with s and

logarithmically with N . Up to a constant, this relation is known to be the

best attainable.

• Sampling operator; The algorithm is simple and requires only the applica-

tion of Φ and ΦT .

• Memory requirement; We could show this to be linear in the problem size,
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if we can ignore the storage requirement for Φ and ΦT .

• Computational complexity; We could shown that the computational com-

plexity is of the same order as the application of the measurement operator

or its adjoint per iteration. The total number of iterations is bounded due

to the linear convergence of the algorithm and depends logarithmically on

the signal to noise ratio ‖xs‖2/‖ẽ‖2.

• Number of iterations. We could show that after at most
⌈

log2

(‖xs‖2

ǫ̃s

)⌉

iter-

ations, the estimation error is smaller than 7ǫ̃s.

• Uniform performance guarantees. The results presented here only depend on

δ3s and do not depend on the size and distribution of the largest s elements

in x.

This is an impressive list of properties for such a relatively simple algorithm.

To our knowledge, only the CoSaMP algorithm shares similar guarantees.

However, as discussed in Section 8, uniform guarantees are not the only con-

sideration and in practice marked differences in the average performance of

different methods are apparent. For many small problems, the restricted isom-

etry property of random matrices is often too large to explain the behaviour

of the different methods in these studies. Furthermore, it has long been ob-

served that the distribution of the magnitude of the non-zero coefficients also

has an important influence on the performance of different methods. Whilst

the theoretical guarantees derived in this and similar papers are important

to understand the behaviour of an algorithm, it is also clear that other facts

have to be taken into account in order to predict the typical performance of

algorithms in many practical situations.
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