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Sampling Theorems for Signals from the Union of

Finite-Dimensional Linear Subspaces
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Abstract— Compressed sensing is an emerging signal acquisi-
tion technique that enables signals to be sampled well below the
Nyquist rate, given that the signal has a sparse representation
in an orthonormal basis. In fact, sparsity in an orthonormal
basis is only one possible signal model that allows for sampling
strategies below the Nyquist rate. In this paper we consider a
more general signal model and assume signals that live on or close
to the union of linear subspaces of low dimension. We present
sampling theorems for this model that are in the same spirit as
the Nyquist-Shannon sampling theorem in that they connect the
number of required samples to certain model parameters.

Contrary to the Nyquist-Shannon sampling theorem, which
gives a necessary and sufficient condition for the number of
required samples as well as a simple linear algorithm for signal
reconstruction, the model studied here is more complex. We
therefore concentrate on two aspects of the signal model, the
existence of one to one maps to lower dimensional observation
spaces and the smoothness of the inverse map. We show that
almost all linear maps are one to one when the observation space
is at least of the same dimension as the largest dimension of
the convex hull of the union of any two subspaces in the model.
However, we also show that in order for the inverse map to have
certain smoothness properties such as a given finite Lipschitz
constant, the required observation dimension necessarily depends
logarithmically on the number of subspaces in the signal model.
In other words, whilst unique linear sampling schemes require
a small number of samples depending only on the dimension of
the subspaces involved, in order to have stable sampling methods,
the number of samples depends necessarily logarithmically on the
number of subspaces in the model. These results are then applied
to two examples, the standard compressed sensing signal model
in which the signal has a sparse representation in an orthonormal
basis and to a sparse signal model with additional tree structure.

Index Terms— Compressed sensing, unions of linear subspaces,
sampling theorems, embedding and restricted isometry

I. INTRODUCTION

A. Compressed sensing

Since Nyquist [1] and Shannon [2] we are used to sampling

continuous signals at a rate that is twice the bandwidth of
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the signal. However, during the last decades, the focus has

shifted and the problem of recovering signals from fewer

measurements than would be required by the Nyquist rate

has been posed [3]. Over the last few years interest in this

problem has dramatically increased, fuelled by several recent

publications, including the work by Vetterli et al. [4] and by

Eldar [5] on sampling of continuous signals and the seminal

papers by Candes, Romberg and Tao [6], [7], [8] and by

Donoho [9] on sampling of signals with finite dimensional

discrete representations. Many of these publications have given

theoretical justification for many of the previously proposed

approaches. In particular, it is now known that finite dimen-

sional signals with certain structures (to be made more con-

crete below) can be sampled at a lower rate without incurring

any loss of information. While the sampling operation is a

simple linear mapping, the reconstruction becomes non-trivial.

The papers by Candes, Romberg and Tao [6], [7], [8] and by

Donoho [9] have shown that under certain conditions on the

signal structure and the sampling operator (which are often

satisfied by certain random matrices), the original signal can

be reconstructed using weakly polynomial time algorithms.

The problem can be formulated as follows. A continuous or

discrete signal f from an N <∞ dimensional Hilbert space is

to be sampled. This is done by using M linear measurements

{〈f, φn〉}n, where 〈·, ·〉 is the inner product and where {φn} is

a set of N dimensional vectors from the Hilbert space under

consideration. Let x be the vector of elements xi such that

f =
∑N

i=1 ψixi for some orthonormal basis ψi of the signal

space. As f and x are equivalent, we will from now on assume

that x is the signal. Let Φ ∈ R
M×N be the matrix with entries

〈ψi, φj〉. The observation can then be written as

y = Φx. (1)

In compressed sensing it is paramount to consider signals x

that are highly structured and in the original papers, x was

assumed to be an exact k-sparse vector, i.e. a vector with

not more than k non-zero entries. Related models of x were

considered in [9], [10], [11], [12], [13] and [14] and extensions

to noisy observations were presented in [10], [15] and [16].

B. Unions of Linear Subspaces

In this paper we consider a quite general signal model and

assume the signal x to be an element from a union of linear

subspaces A, defined formally as

A =

L
⋃

j

Sj , Sj = {x = Ωja,Ωj ∈ R
N×kj ,a ∈ R

kj}, (2)
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where the Ωj are bases for linear subspaces and where

kj ≤ k < ∞. This model is a special case of the union of

subspaces model introduced in [17] with the difference that

we will restrict the discussion to mixtures of finitely many

finite dimensional subspaces, i.e we assume L <∞.

If Si,j is the convex hull of the set Si

⋃

Sj , we define

kmax = max
i6=j

dim(Si,j), (3)

that is, the maximum dimension of the convex hull of the

unions of two distinct subspaces in the model. In this paper

we follow a similar approach to that in [17] and rely heavily

on the difference between any two vectors xi −xj , both from

A. The vectors xi − xj lie in a union of subspaces Si,j and

kmax gives the largest dimensions of any of these subspaces.

This quite general signal model incorporates many, though

not all, previously considered compressed sensing settings. It

includes, for example

• The ‘traditional’, noiseless k-sparse model as considered

by Candes et al. in for example [6] and by Donoho in [9],

in which x is assumed to have no more than k non-zero

elements.

• The set of vectors with a k-sparse representation in a

general, possibly overcomplete and non-orthogonal dic-

tionary Ψ as considered in [12] and [13], i.e. x = Ψz,

where Ψ is a general matrix with unit norm columns and

possibly more columns than rows and where z is a vector

with no more than k non-zero elements.

• The set of k-sparse signals in which the non-zero ele-

ments form a tree as considered in [18].

• The simultaneous sparse approximation problem [19]

[20] [21] [22] [23], where a number of observations yi

is assumed to follow the model yi = Φixi where the xi

are constrained to have the same non-zero elements.

• The set consisting of the union of statistically independent

k-dimensional subspaces Si as considered by Fletcher et

al. in [14].

C. Contribution

Many of the previous papers in compressed sensing have

addressed two important aspects, namely, the specification of

conditions that guarantee an efficient reconstruction of the

original signal from the measurement samples and practical

constructions of measurement ensembles. In this paper we

will study the problem of compressed sensing of signals

which are known to lie in A. In particular we address two

fundamental aspects, for each of which, the primary question

is the relationship between the required observation space

dimension as a function of both, the maximum dimension of

any of the subspaces as well as the total number of subspaces.

The first aspect studied is that of characterising linear maps

that map each x ∈ A to a unique observation y. We here

study necessary and sufficient conditions for the existence of

such one to one maps. This one to one property of Φ for

elements of A is clearly an important aspect in sampling as

it specifies a ‘minimal’ requirement that allows us to sample

a signal without loss of information. Whilst this property has

previously been studied in [17], our first main contribution

is to show that under appropriate conditions almost all linear

maps are one to one. For the mixture model with finitely many

finite dimensional subspaces, our results are therefore stronger

than those derived in [17], which only states that the set of

one to one maps is a dense subset of all linear maps.

Fletcher et al. also studied a similar formulation of the

problem but assumed statistically independent subspaces. They

have shown that for this probabilistic model and for certain

probability models on x, almost all x can be mapped one

to one under even milder conditions. In this paper we show

that a similar result also holds for the more general union of

subspaces model considered here.

The second important aspect addressed is a theoretical

characterisation of the inverse map. Here we are particularly

interested in the Lipschitz property of this inverse map and we

derive conditions for the existence of a bi-Lipschitz embedding

from A into a subset of R
N . This Lipschitz property is

an important aspect of the map which ensures stability and

controls the behaviour of any reconstruction1 to perturbations

of the observation, i.e. it controls the amount by which small

perturbations are amplified in the reconstruction. This in effect

specifies the robustness of compressed sensing against noise,

quantisation errors and perturbations of the signal from the

exact subspace model. Furthermore, in the k-sparse model, the

Lipschitz property is also an important aspect for the existence

of efficient and robust reconstruction algorithms.

Whilst sufficient conditions for the existence of Lipschitz

inverses have been extensively studied (however, under a

different name) in the context of k-sparse signal models,

necessary conditions have to our knowledge not been reported

(see however the discussion below). The derivation of such

conditions, for the general model considered here, constitute

the second main contribution of this paper. In particular, we

derive novel sufficient conditions for the existence of maps

whose inverse has a specific Lipschitz constant. In the special

case of k-sparse signals, the theorem reduces to well known

results.

D. Notation

The set A will denote the union of L subspaces in an N di-

mensional ambient space. Each subspace will have dimension

not more than k and is often denoted by Si. When talking

about dimension in this paper, we in general mean the box

counting dimension. Let N(ǫ) be the minimum number of

boxes, each of side length ǫ, required to cover a given set.

The box counting dimension is then defined as [24, p. 185]

dimbox := lim
ǫ→0

log(N(ǫ))

log(1/ǫ)
. (4)

For linear subspaces, this is equivalent to the normal Euclidean

notion of dimension. The set of signals x will be assumed to

be taken from the set A. The linear map Φ will map any

element from A into an M dimensional observation space,

1It is important to stress that this is a property of the inverse map itself,
which is uniquely (but indirectly) defined for any one to one map. This
property has therefore nothing to do with any particular algorithm one might
design to (approximately) calculate this inverse map.
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elements of which will be denoted by y. We will often use

the notation BN
ρ (p) to refer to the ball in R

N , i.e. the set of

points {x : ‖p − x‖2 ≤ ρ,x ∈ R
N}. If p = 0 we will write

BN
ρ . A similar notation is used for the sphere which is denoted

by SN−1
ρ (p), which will be the sphere living in R

N .

E. Paper Overview

The first main section of this paper, section II, derives

two theorems that give conditions under which the map Φ

is one to one for elements from A. The developed theory is

strongly inspired by work on embedding theory, some of the

relevant results of which are reviewed in subsection II-A. This

is followed by two subsections stating the main results for the

existance of one to one maps for the two conditionsM ≥ kmax

(subsection II-B) and k < M ≤ kmax − 1 (subsection II-C),

where kmax is defined in (3). In section III we tighten the

requirements on Φ. Not only do we require Φ to be one to

one for elements of A, we further assume that Φ and its inverse

have certain properties such as a given Lipschitz constant.

This requirement leads to stricter necessary as well as to more

stringent sufficient conditions on the number of observations to

be taken. To demonstrate the generality of the results of section

III, section IV looks at two particular cases that fit the union of

subspace model studied. The first case is the standard k-sparse

signal model traditionally considered in compressed sensing

(subsection IV-A) while the second example is a k-sparse

signal model in which non-zero coefficients are constrained

to form a tree structure (subsection IV-B). Most of the proofs

are stated in the appendices.

II. EXISTENCE OF A UNIQUE INVERSE MAP

One quite natural property to be required from any signal

acquisition or sampling system is that the system preserves

(at least most) of the information contained in the signal.

In compressed sensing it is therefore often required that the

system maps any x from the set under consideration to a

unique observation y. Under this condition, knowledge of y

is, at least in theory, equivalent to knowledge of x.

A map Φ that maps different points x to unique vectors y

is said to be one to one. In this section we derive conditions

under which Φ is one to one for all x ∈ A.

This section considers sufficient conditions relating M and

k. We here distinguish two cases, M ≥ kmax and k < M ≤
kmax − 1. We prove that almost all linear maps are one to

one whenever M ≥ kmax, whilst for k < M ≤ kmax − 1 it

can be shown that almost all linear maps are one to one for

almost all x ∈ A (where almost all requires the definition of

a smooth measure on A). However, before stating the main

results, the next subsection recalls some motivating results

from embedding theory, which form the basis of the main

theorems.

A. Embedding of low dimensional compact sets

Whitney’s Embedding Theorem [25, chapter 10] states that

“Every compact metrizable k-dimensional topological space

(or alternatively every smooth k-manifold) can be embedded

into R
M if M > 2k”. Dimension here generally refers to the

(Lebesgue) covering dimension as defined in for example [24,

p. 96].

An extension of this theorem by Sauer et al. [26] is

Theorem 2.1 (Theorem 2.3 [26]): Assume a compact sub-

set C of RN with box counting dimension k and let M > 2k,

then almost all smooth maps F from R
N to R

M have the

property that F is one to one on C.

As pointed out by Sauer et al., the space of smooth maps

is infinite-dimensional and there is no Lebesgue measure on

such a space. The term “almost all” in the above theorem has

therefore to be understood in terms of prevalence [27]. As we

are dealing with finite dimensional spaces of linear maps in

this paper, we will from now on use the term “almost surly” to

mean that the complement will have Lebesgue measure zero.

The distinction between this definition and that in terms of

prevalence is therefore not required here and we refer the

interested reader to the original literature cited above.

These results can be seen in terms of a quite general

compressed sensing problem. Assume that the data lives on

a k dimensional compact subset of the data-space. It is then

clear that we would only need M > 2k observations to exactly

specify the data. This suggests an extension of compressed

sensing to more general low dimensional data structures. An

example of this, where the data was assumed to lie on a smooth

manifold was already considered by Baranuick and Wakin in

[28]. The above theorem further suggests the use of non-linear

measurements, i.e. the use of smooth maps. To our knowledge,

such maps have not been considered for compressed sensing

so far.

It is important to note that Whitney’s result and Sauer’s

extension hold for general low dimensional compact manifolds

as well as general smooth embeddings (not necessarily linear).

We show below that, in the case of a unions of k-dimensional

linear subspaces and for linear embeddings, we can actually

get an embedding into R
M if M ≥ 2k (rather than the strict

inequality of the above theorems).

B. The case M ≥ kmax

The theorem by Sauer et al. sheds new light on the more

traditional compressed sensing problem that considers signals

that are well approximated as lying on the union of linear

subspaces and mappings that are assumed to be linear. In this

context, the paper of Lu and Do [17] derived results related

to those of Sauer et al. In particular [17] shows that the set

of maps from the union of linear subspaces into RM with

M ≥ kmax is dense. For the k sparse model, [3] (see also

Corollary 4 in [29]) presented the following result

Theorem 2.2: A linear system y = Φx for which all

possible combinations of M of the N columns of Φ are

linearly independent and for which x has k < M/2 non-

zero elements does not admit any other solution with less than

M − k + 1 non-zero elements.

The property2 that all combinations of M of the N columns of

Φ are linearly independent was termed the Unique Represen-

tation Property (URP) in [3]. Combining this theorem with the

2Note that this property is equivalent to spark(Φ) = M+1, where spark

is defined as in [29].
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fact that almost all linear maps have the URP gives a similar

result to the one we derive below, but for the special case of

k-sparse signals. See also lemma 2.1 in [30] for an alternative

statement of the same result. A related result has also been

presented in [31, Theorem 2.1] in which sparse signals are

considered and in which the measurement ensemble was a

matrix with Gaussian distributed entries.

We derive our result based on the analysis of Sauer et

al. and show that for signals from finite unions of low

dimensional linear subspaces, almost all linear maps are one

to one whenever M ≥ kmax. This result is a restriction of

the more general results of Sauer et al. to unions of linear

subspaces and linear mappings and allows us to reduce the

required observation dimension by one and therefore extends

the results from [17] and [31]. In particular, we can use a

slight variation of the proof used by Sauer et al. [26] to derive

the following theorem

Theorem 2.3: Almost all linear maps Φ : A → RM are

one to one if M ≥ kmax.

The somewhat lengthy and rather involved proof can be found

in Appendix I. In [17] a very similar result was derived for

a countably infinite union of subspaces. The difference to our

result is that for the finite union of subspaces, our theorem

states that almost all maps have the desired property, whilst

in [17] it was shown that the set of maps with the property is

dense, which is a slightly weaker statement (though derived

for a more general model) as density of a set does not imply

anything about the measure of the set.

This theorem tells us that, not only is there a map that

will map the union of subspaces of interest one to one into

an M ≥ kmax dimensional observation space, but also, that

almost all linear maps will do. Therefore, if we chose the

maps at random (as is often advertised in compressed sensing)

we will find such a map with probability one. We are then

guaranteed that there also exists a unique inverse map that

will get us back to the original signal. However, the theorem

does not give any insight into the behaviour of this inverse

map, which is the topic of the next section.

It is also important to note that the above theorem is tight

as is shown by the following necessary condition.

Theorem 2.4: A necessary condition for the map Φ : A →
RM to be one to one is that M ≥ kmax.

This is Proposition 3 in [17]. For completeness, a proof can

also be found in Appendix II.

C. The case k < M ≤ kmax − 1

The paper [26] sports a further theorem that is of interest

for compressed sensing.

Theorem 2.5 (Self-Intersection Theorem [26]): For any

compact subset C of a metric space RN , let C have box-

counting dimension k and let M ≤ 2k be an integer. For any

δ and almost all smooth maps F : A → RM , the set

{x1 ∈ A : ∃x2 ∈ A,F (x1) = F (x2), ‖x1 − x2‖2 ≥ δ} (5)

has box-counting dimension at most 2k −M .

The self-intersection theorem of Sauer et al. hints at a

further possible reduction in the number of required obser-

vations if we can specify a smooth measure on each of the

subspaces. We can decompose A =
⋃k

i=1 Ai, where the sets

Ai are unions of subspaces of dimension exactly i. We define

a measure on A by assuming a measure defined on each

of the Ai in one of the possible decomposition of A. The

measures on Ai are assumed to be such that all subsets of Ai

of dimension less than i are of measure zero3.

The argument given in Appendix III then proves the fol-

lowing theorem.

Theorem 2.6: Assume a measure defined on A as outlined

above, then almost all linear maps Φ : RN → RM are one to

one on almost all elements of A whenever k < M ≤ kmax−1.

While the theorem in the previous subsection was valid for

all x ∈ A, the theorem in this subsection assumes that the

elements x are drawn randomly from A.

Again note that a similar result for sparse signals and

Gaussian measurement ensembles has been presented in [31,

Theorem 2.1]. Our results again extend these results to more

general linear subspaces and to almost all linear measure-

ments. In this context, it is also interesting to note the result by

Fletcher et al. [14] who considered a mixture of statistically

independent k dimensional subspaces with a Gaussian measure

on each subspace. Using information theoretic arguments, they

have shown that with probability one compressed sensing does

not lose any information for their model, whenever M > k.

Our results are a more general version of this observation.

III. PROPERTIES OF THE INVERSE MAP

While the existence of a one to one map is important as it

guarantees the existence of a unique inverse map, in practical

applications more stringent requirements are often called for.

Two such requirements are that the observations are robust to

noise and the existence of efficient algorithms for the recovery

of the original signal. Both of these properties can be shown

to be strongly related to distance preserving properties of the

map. For example, it is not only required that two distinct

signals are mapped to distinct observations, it is also important

that the distance between distinct signals is not changed too

much in the observation domain [6], [10], [16], [32], [16]. A

mathematical tool to measure this property for k-sparse signals

is the k-restricted isometry constant δk [33] defined as follows

Definition: (k-restricted isometry) For any matrix Φ and

integer k we define the k-restricted isometry constant δk(Φ)
to be the smallest quantity such that

(1 − δk(Φ)) ≤ ‖Φx‖2
2

‖x‖2
2

≤ (1 + δk(Φ)), (6)

holds for all x with no more than k non-zero elements.

The restricted isometry constant δk bounds the amount by

which the length of any k sparse vector is changed by Φ. If

δk = 0 then no change takes place. In order for each k-sparse

signal to admit a one to one map Φ it is necessary that δ2k < 1
for otherwise there would be a 2k sparse vector x that is the

linear combination of two k-sparse vectors x = x1 − x2 for

3For example, this models includes the standard sparse signal model in
which one randomly selects the number of non-zero coefficients (constrained
to be no more than k), their position and their value.
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which Φx = 0, which would imply that Φ cannot be one to

one for all k-sparse signals, i.e. we would have Φx1 = Φx2.

We therefore have the following corollary to Theorem 2.3:

Corollary 3.1: If M > 2k− 1, then almost all linear maps

Φ can be normalised such that δ2k(Φ) < 1.

A natural extension of the k-restricted isometry for the more

general union of subspaces model would be

Definition: (A-restricted isometry) For any matrix Φ and

any subset A ⊂ R
N we define the A-restricted isometry

constant δA(Φ) to be the smallest quantity such that

(1 − δA(Φ)) ≤ ‖Φx‖2
2

‖x‖2
2

≤ (1 + δA(Φ)), (7)

holds for all x ∈ A.

If we define the set Ā = {x = x1 + x2 : x1,x2 ∈ A} (Note

that δĀ(Φ) ≥ δA(Φ).), then a similar argument to the one

above shows that a necessary condition for the existence of a

one to one map would require that δĀ < 1 for otherwise there

would exist x1 6= x2 such that Φx1 = Φx2, i.e. such that

Φx1 − Φx2 = 0. We again get a corollary to Theorem 2.3.

Corollary 3.2: If M ≥ kmax, then almost all linear maps

Φ can be normalised such that δĀ(Φ) < 1.

Interestingly, this result does not depend on the ambient

dimension of the signal space nor on the number of subspaces

in the signal model. However, the corollary only guarantees

that almost all (suitably normalised) linear maps of correct

dimension satisfy δĀ(Φ) < 1, but allows δĀ(Φ) to get arbi-

trarily close to one. We therefore turn now to a more stringent

requirement on δĀ(Φ), namely we require δĀ(Φ) ≤ c < 1 for

some given constant c. The theorems of this section show that

the existence of a fixed restricted isometry constant requires a

logarithmic dependence on the number of subspaces.

One important interpretation of the restricted isometry con-

stant is in terms of the “smoothness” of the inverse map from y

to x. Denote the inverse map by f(y) say. This “smoothness”

can, for example, be measured by the Lipschitz constant KI

(I for inverse), defined as the smallest number KI such that

‖f(y1) − f(y2)‖2 ≤ KI‖y1 − y2‖2. (8)

If xi,xj ∈ A and if δĀ < 1, then we can write

‖x1−x2‖2 = ‖f(y1)−f(y2)‖2 ≤ 1
√

1 − δĀ
‖y1−y2‖2, (9)

i.e. 1√
1−δĀ

is a bound on the Lipschitz constant KI of

the inverse map from the observations to the signal space.

Similarly, the Lipschitz constant KF (F for forward) of the

map Φ (defined as the map from A to Φ(A)) can be bound by
√

1 + δĀ. It is important to note that in the definition of the

Lipschitz constant KF used throughout this paper, we consider

Φ to be restricted to elements from A. One should therefore

think of KF as a restricted Lipschitz constant.

A. A sufficient condition for the existence of a Φ with required

δA

We first state a sufficient condition that guarantees the

existence of a fixed δA(Φ) < 1. The proof can be found in

Appendix IV

Theorem 3.3: For any t > 0, let

M ≥ 2

cδA

(

ln(2L) + k ln

(

12

δA

)

+ t

)

, (10)

then there exist a matrix Φ ∈ R
M×N and a constant c > 0

such

(1 − δA(Φ))‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δA(Φ))‖x‖2
2 (11)

holds for all x from the union of L arbitrary k dimensional

subspaces A. What is more, if Φ is generated by randomly

drawing i.i.d. entries from an appropriately scaled subgaussian

distribution4, then this matrix satisfies equation (11) with

probability at least

1 − e−t. (12)

The constant c then only depends on the distribution of the

entries in Φ and is c = 7
18 if the entries of Φ are i.i.d. normal.

Note that, in contrast to the results of the previous section,

this sufficient condition is logarithmic in the number of

subspaces considered. In the next subsection we show that

this logarithmic dependence is in fact necessary.

We have here stated the results for a general union of

subspace model A. By choosing the appropriate values for

L and k, results for A, Ā or other unions of subspaces can be

derived. For example, assume xi,xj ∈ A. The vectors xi−xj

lie in Ā, which is the union of L̄ = (L2 −L)/2 subspaces of

dimension no more than kmax. We therefore get the following

corollary

Corollary 3.4: For any t > 0, let

M ≥ 2

cδĀ

(

ln(2L̄) + kmax ln

(

12

δĀ

)

+ t

)

, (13)

then there exists a matrix Φ ∈ R
M×N and a constant c > 0

such that

KI ≤ 1
√

1 − δĀ
, (14)

and

KF ≤
√

1 + δĀ. (15)

If Φ is generated by randomly drawing i.i.d. entries from an

appropriately scaled subgaussian distribution, the matrix will

satisfy the conditions with probability at least 1 − e−t.

B. A necessary condition for the existence of a Φ with

required δĀ

In this subsection we study a necessary condition for the

existence of a map Φ with a required Lipschitz constant for

points in A and with an inverse, also with a given Lipschitz

constant. To derive this result, we relate the distance between

p unit norm vectors packed optimally into A to the number

of required observations. To formalise the notion of optimal

packing, we define the maximum packing distance of a set A
as follows

4Examples of these distributions include the Gaussian distribution and
random variables that are ± 1

√

N
with equal probability [34] [12].
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Definition: (maximum packing distance ωp(A)) Let Pp be

a set of p unit norm vectors from A. For any set A, the

maximum packing distance is defined as

ωp(A) = max
Pp



 min
xi,xj∈Pp

xi 6=xj

‖xi − xj‖2



 , (16)

where the maximum is taken over all sets of p unit norm

vectors taken from the set A and where the minimum is taken

over all combinations of distinct elements from that set of p
vectors.

In words, we are looking for a set of p vectors in A, for which

the closest vectors are as far apart from each other as possible.

In this set of vectors, the maximum packing distance is the

smallest distance between any two vectors.

We are now able to state a necessary condition for the

existence of a map Φ with a prescribed δĀ. In fact, we derive

a slightly more general theorem in terms of the Lipschitz

constants KF of Φ (for values in A) and KI of the inverse

map. This automatically gives the necessary condition for the

existence of a restricted isometry constant δĀ by using KF =
√

(1 + δĀ) and KI =
√

1
(1−δĀ) . We have the following

theorem proven in Appendix V.

Theorem 3.5: Let A be the union of L subspaces of dimen-

sion no more than k. In order for a linear map Φ : A 7→ R
N

to exist such that it has a Lipschitz constant KF and such that

its inverse map f : Φ(A) 7→ A has a Lipschitz constant KI ,

it is necessary that for all integers p > 0

M ≥ ln(p)

ln
(

4KF KI

ωp(A)

) . (17)

The above inequality must hold for all integer p > 0. A

tighter bound would therefore require the study of the bound

for varying p. This requires a detailed analysis of ωp(A).
Instead of following this route further here, we use a simpler

approach based on a different geometric property of A defined

as follows.

Definition: (∆(A) subspace separation) Let A =
⋃

i Si be

the union of L subspaces Si and let P = {xi ∈ Si : ‖xi‖2 =
1}i∈{1,2,...,L}, that is, P is a set of L unit length vectors,

each being an element of a different subspace. The subspace

separation of A is defined as

∆(A) = max
P



 min
xi,xj∈P
xi 6=xj

‖xi − xj‖2



 . (18)

In words, we are looking for a set of L vectors in A,

where each vector is in a different subspace, for which the

closest vectors are as far apart from each other as possible.

The subspace separation ∆(A) is the smallest such distance

and measures the separation of subspaces in the model. It

depends on A and in particular on the number of subspaces

in A. However, for a given model A one might be able to

add additional subspaces without changing ∆(A). There is

however a limit to this, depending on N . For example, in

order for A to have a separation ∆(A) it is necessary that

there are L vectors that can be packed into R
N with an ℓ2

distance between any two vectors given by ∆(A).
As the set of L vectors over which we maximise in the

definition of ωL(A) includes all the sets over which we

maximise in the definition of ∆(A), we have

ωL(A) ≥ ∆(A). (19)

This bound can then be used in Theorem 3.5 to derive the fol-

lowing necessary condition relating the number of subspaces

L to the number of required observations.

Corollary 3.6: Let A be the union of L subspaces of dimen-

sion no more than k. In order for a linear map Φ : A 7→ R
N

to exist such that it has a Lipschitz constant KF and such that

its inverse map f : Φ(A) 7→ A has a Lipschitz constant KI ,

it is necessary that

M ≥ ln(L)

ln
(

4KF KI

∆(A)

) . (20)

Therefore, if we keep the subspace separation of the model

fixed, increasing the number of subspaces (and possibly in-

creasing the ambient dimension), whilst keeping the dimension

of the subspaces fixed, we see that it is necessary for the

number of samples to grow logarithmically with the number

of subspaces.

It is again worth stressing the difference between the results

of this section and those of the previous section. In the

previous section we have analysed the existence of one to one

maps. While this one to one property implies the existence

of an inverse map, it does not give any guarantees on the

Lipschitz constant of this map, which might be arbitrary large.

The theorems in this section differ in that they are asking

for conditions that give a fixed Lipschitz constant. Under

this additional constraint we see that it is not only necessary

that M ≥ kmax, but that M necessarily has to depend

logarithmically on the number of subspaces considered.

IV. EXAMPLES

A. k-Sparse Signals

As a specific example, we now return to the “traditional”

compressed sensing model in which x is assumed to have k
non-zero elements. Using Stirling’s formula, we can bound the

number of subspaces in the k-sparse model by

(N/k)k ≤ L =

(

N
k

)

≤ (eN/k)k. (21)

With this bound, the sufficient condition from the previous

section reduces immediately to the results similar to those first

presented in [33] for the Gaussian case. In particular we see

that with probability at least

1 − e−t (22)

a matrix with i.i.d. Gaussian (or Bernoulli) entries satisfies the

δk(Φ)-restricted isometry condition whenever

M ≥ 2

cδk

(

k ln(eN/k) + k ln

(

12

δk

)

+ ln(2) + t

)

, (23)

where c is a constant depending on the probability distribution

of the entries in Φ.
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In the k-sparse case, ∆(A) ≥
√

2/k, because we can

always choose L k-sparse vectors which differ in their support

(i.e. which lie on a different subspace) and for which all the

non-zero elements have magnitude 1/
√
k. Two such vectors

are closest if they differ only in two elements, from which we

get the bound.

Therefore, the following corollary is a simple consequence

of Theorem 3.6.

Corollary 4.1: Let A be the union of subspaces spanned by

all k-sparse vectors. In order for a linear map Φ : A 7→ R
N

to exist such that it has a Lipschitz constant KF and such that

its inverse map f : Φ(A) 7→ A has a Lipschitz constant KI ,

it is necessary that

M ≥ k ln(N/k)

ln
(√

8kKFKI

) . (24)

It is interesting to note the following argument [35]5 show-

ing the necessity of the logarithmic dependence on the signal

space dimension for signals with bounded lp “norm” (p ≤ 1).

It has been shown that the restricted isometry constant implies

the recovery of these signals to within a given error bound (See

for example [8]). On the other hand, it is also known that the

best attainable error bound is related to the Gelfand width of

the signal classes. This relationship shows that the given error

bound is only attainable if the observation dimension depends

logarithmically on the signal space dimension. See [11] for

details on Gelfand width and the relationship to the restricted

isometry condition.

B. k-Sparse Rooted Sub-Trees

Let us consider another example. For many images, it

is known that significant non-zero wavelet coefficients have

certain tree structures. A more powerful signal model will take

such structure into account. One recent example is the model

considered by La and Do [18] who also presented a practical

algorithm to recover the non-zero coefficients in such a model.

Assume that x has k non-zero elements as in the k-sparse

model. In addition, the elements in x are assumed to form

a binary tree and we restrict the k non-zero coefficients of

x to form a rooted sub-tree. The number of sub-trees with k
elements is in general much smaller than the number of all k-

sparse vectors. Each sub-tree with k nodes defines a subspace

and we need to bound the total number of these subspaces

to use the theory developed above. The number of different

sub-trees with k nodes is clearly bounded by the total number

of different trees with k nodes. The number of different trees

with k nodes is known to be the Catalan number

Ck =
1

k + 1

(

2k
k

)

, (25)

which we can bound using Stirling’s formula

Ck ≤ (2e)k

k + 1
. (26)

5We would also like to thank Joel Tropp for pointing this argument out to
us.

Therefore, we have a bound on the number of k-dimensional

subspaces in the k-sparse tree model

L ≤ (2e)k

k + 1
. (27)

Importantly, and in contrast to the bound (21) for the k sparse

model, L does not depend on the ambient dimension N .

Using this bound in theorems 3.3 gives the following

corollary

Corollary 4.2: Let A be the set of signals with k non-zero

elements that form a rooted sub-tree. There exists a matrix Φ

such that with probability at least

1 − e−t. (28)

(1 − δA(Φ))‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δA(Φ))‖x‖2
2 (29)

for all x ∈ A, whenever

M ≥ 2

cδA

(

k ln

(

24e

δA

)

− ln

(

k + 1

2

)

+ t

)

. (30)

Again, c is a constant depending only on the distribution of

the entries in Φ.

A general lower bound for L is not available, but if we

assume that the height of the tree is larger than k (note that

this implies that k ≤ log2(N−1)−1), then the Catalan number

gives the exact number of k element rooted sub-trees. Under

this assumption we have

2k

k + 1
≤ L. (31)

Therefore, (again using ∆(A) ≥
√

2/k) we get the necessary

condition.

Corollary 4.3: Let A be the set of signals with k non-zero

elements that form a rooted sub-tree and assume that 2 ≤ k ≤
log2(N − 1) − 1. In order for a linear map Φ : A 7→ R

N to

exist such that it has a Lipschitz constant KF and such that

its inverse map f : Φ(A) 7→ A has a Lipschitz constant KI ,

it is necessary that

M ≥ k ln(2) − ln(k + 1)

ln
(√

8kKFKI

) . (32)

V. DISCUSSION AND CONCLUSION

The union of linear subspaces model considered in this

paper is a general signal model that includes many of the signal

models previously studied in compressed sensing. Results

derived for this model have therefore a wide applicability

and can provide new insight into the traditional sparse coding

problem. In this paper we have studied two aspects of this

general model, the existence of one to one maps into low

dimensional observation spaces and the properties of the

inverse maps. We were particularly interested in the behaviour

of these properties in terms of the observation dimension,

thereby deriving theorems that are in the same spirit to the

Nyquist-Shannon sampling theorem.

The first new result presented was that almost all linear

maps are one to one, whenever the observation dimension is

at least twice the largest subspace dimension in the model
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considered. This is an interesting result similar to that given

in [17]6 showing that one to one maps are relatively “easy”

to come by and do not depend on either, the signal ambient

dimension nor on the number of subspaces in the model.

While the one to one property is clearly desirable for signal

acquisition as it guarantees that the observation contains the

same information as the original signal, in practical applica-

tions two other important properties have to be taken into

account, the robustness to noise and the existence of efficient

algorithms to calculate the inverse map. The second part of

this paper therefore concentrated on properties of the inverse

map and in particular its smoothness. In order to guarantee

a given smoothness of the inverse map, we showed that the

observation dimension had to depend at least logarithmically

on the number of subspaces in the signal model and we

showed that this logarithmic dependence was sufficient for

the existence of a smooth inverse. This is a much stricter

condition than the one required for the existence of one to

one maps, however, for these stricter conditions we get the

additional guarantee of the existence of an inverse map with

a fixed Lipschitz constant.

An important realisation is that linear one to one em-

beddings only require twice as many observations as the

dimension of the largest subspace in the model, however,

these sampling schemes can be arbitrarily unstable. In order

to control the stability of such sampling schemes, the number

of samples must depend logarithmically on the number of

subspaces in the model. Similar results are known for the

sparse signal model in compressed sensing and we have here

shown that this behaviour is valid in a much more general

settings. In fact we could show that for the k sparse signal, we

directly recovered know sufficient conditions, though the de-

rived necessary conditions are novel. In particular, we showed

that the logarithmic dependence of the observation space

dimension on the signal ambient dimension is necessary for

the k-sparse model. The dependence on the ambient dimension

is however a result of the growth of the number of subspaces

in the k-sparse model when the ambient space dimension is

increased. Interestingly, if we further constrain the model and

assume the non-zero coefficients to have tree structures, the

dependence on the signal ambient space dimension disappears.

We have here studied theoretical properties of a com-

pressed sensing approach for signals from the union of linear

subspaces and specified theoretical properties of the inverse

map f(y). Whilst a small Lipschitz constant of f(y) clearly

specifies a robustness against noise, we also believe that this

constant controls other important aspects of f(y). It is for

example well known that in the k-sparse signal model, f(y)
can be implemented efficiently using linear programming algo-

rithms whenever the restricted isometry constant is sufficiently

small. The problem of calculating f(y) for the more general

unions of subspace model has not been addressed in this

paper, however, we believe that the ability to implement f(y)
efficiently might well be related to the Lipschitz constant of

f(y) or to the restricted isometry constant and we hope that the

6The differenc being that our results show that almost all maps have the
desired property, whilst in [17] it was shown that for the countably infinite
union of subspaces, the set of maps having the one to one property is dense.

developments of this paper are instrumental in such a theory,

but a detailed study of these issues has to be relegated to future

publications.

We have here concentrated on the union of finitely many

finite dimensional subspaces. Extensions to unions of infinitely

many finite dimensional subspaces were considered previously

in [17], where the existence of one to one maps for this model

was studied. The question now arises whether our results are

extendable to this setting. In particular the conditions for the

existence of stable embeddings is of interest. For a model

with infinitely many subspaces, a result like that of Theorem

3.3 would clearly not be desirable, in that it would imply

the requirement of infinitely many observations. However, the

necessary condition in Theorem 3.5 also depends on how well

we can pack L vectors onto the subspaces. In order to get a

finite result, one important issue therefore seems to be the

necessity to control this geometric property.

APPENDIX I

PROOF OF THEROEM 2.3

For the proof we need to consider the set C defined as the

union of hyper-spheres of dimension kj − 1

C =

L
⋃

j

Cj , Cj = {x = Ωja,Ωj ∈ R
N×kj ,a ∈ R

kj , ‖x‖ = 1},

(33)

which can be used as an alternative definition of A
A = {x̂ : x̂ = αx,x ∈ C, α ∈ R}. (34)

Note that the set C has box counting dimension k − 1, where

k is the maximum of the kj .

The goal is then to show that, for the set defined below,

almost all linear maps Φ ∈ R
M×N are one to one under

appropriate conditions on M . We proceed as follows. First

we state a lemma that bounds the volume of the subset

of any bounded set, that maps into a ball centred at zero.

Later, shrinking the diameter of the ball in this lemma, it

can be shown that the set that exactly maps to zero must

have a bounded dimension. This dimension depends on M
and the dimension of the set. To prove that this holds for

almost all maps, we also need to consider a neighbourhood

of an arbitrary linear map and show that the property holds

for almost all maps in the neighbourhood of any map. This

approach mirrors closely the derivation in [26] from where we

borrow the first lemma

Lemma 1.1 (Lemma 4.2 from [26]): Let θΘ(α) = Θα+d

be an affine map from RT to RM , where Θ is a T×M matrix

and d ∈ R
M . Given a positive integer r, let σ denote the rth

largest singular value of the matrix Θ. Let BT
t be the ball

centred at the origin in RT space with radius t. Similarly, let

BM
m be the ball centred at the origin in RM space with radius

m. Then the portion of the volume of BT
t that overlaps with

the set θΘ(α)−1(BM
m ) can be upper bounded by

V ol(BT
t ∩ θΘ(α)−1(BM

m ))

V ol(BT
t )

< 2
T
2

(m

σt

)r

. (35)

The second lemma also follows closely the development in

[26], with the main difference that we here concentrate on
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linear maps. As this lemma does most of the work in proving

the main result, it is given here for completeness. Let us,

however, first introduce the set

B = {b : b = x1 + x2;x1,x2 ∈ A, ‖b‖ = 1}. (36)

Note that B has dimension no more than kmax − 1.

Lemma 1.2: Let the set {Φi}i∈{0,1,...,T} be a basis for

linear maps from RN to RM . For any Φ0 we define Φα =
Φ0 +

∑T
i αiΦi for α ∈ R

t, or in the language of the previous

lemma, Φb = θΘb
(α) = Θbα+ d =

∑T
i αiΦib + Φ0b. Let

kb = kmax − 1 be the box counting dimension of B. Then

for almost all α ∈ R
T , the set Φ−1

α (0), i.e. the set of b ∈ B
for which Φαb = 0, has lower box counting dimension at

most kb −M and in particular, if M > kb = kmax − 1, then

Φ−1
α (0) = ∅.

Proof: Φα(b) is a bilinear map. In order to prove the

lemma, we are considering the set Φα(b) for both, α and b

taking values in some ball in their respective spaces. Lemma

1.1 can then be used to bound the probability for the set Φα(b)
to overlap with a ball centred at zero. This probability can be

made arbitrary small, from which the lemma will follow. We

proceed in several steps.

1) Because of the linearity of Φα as a function of α, it

suffices to prove the result for α ∈ BT
t for some t > 0.

This defines a neighbourhood of linear maps and we

need to show that almost all maps in this neighbourhood

do not map any b into zero.

2) Let Br ⊆ B be the set of b ∈ B,b 6= 0 for which the

matrix

Θb = {Φ1b,Φ2b, . . . ,Φtb} (37)

has rank M with the M th largest singular value of

Θb greater than σ. Let kr be the lower box counting

dimension of Br. Note that Θb is of rank M almost

surely.

3) We next consider the ball BM
m ⊂ RM of radius m and

centred at zero. Lemma 1.1 shows that for a fixed b the

maximum overlap of the set BT
t and the set Φ−1

α (BM
m )

is less than 2
T
2 ( m

σt )
r, i.e. for a fixed b the probability of

any of the Φα, α ∈ BT
t mapping b into a ball centred

at zero is bounded. In other words, for fixed b, Φα(b)
is more than t away from zero except with probability

2
T
2 ( m

σt )
r.

4) Next we consider a third ball, this time in RN , centred

at an arbitrary b and with radius n, say BN
n (b) ⊂ Rk.

Because of the linearity of Φα, the image of any BN
n (b)

under Φα, α ∈ BT
t is a subset of some ball in RM

with bounded radius Cn for some C. If Φα maps b

(the centre of our ball) further away from zero than

Cn, i.e. if |Φα(b)| > Cn, then the image of the ball

BN
n (b) does not contain zero. We can therefore bound

the probability that the image of the ball BN
n (b) under

Φα, α ∈ BT
t contains zero with the probability that

Φα, α ∈ BT
t maps b to a point within the ball with

radius Cn. By the argument above, this probability is

bounded by 2
T
2 (Cn

σt )r. For σ > 0 and t > 0 fixed, we

have a bound of C1n
r.

5) Because Br is bounded, we can cover Br with say p
balls of radius n. Furthermore, we can bound p using

p ≤ n−k, where we can make k arbitrary close to

the box counting dimension kr of Br by choosing n
small enough. Therefore, the probability that q of the

images of the p balls contain zero can be bounded by

C1n
r−k/q. Writing q = n−k, i.e. writing the probability

as C1n
d−(k−r), we see that if d > k − r we can make

the probability arbitrary small by decreasing n.

6) We can therefore decrease n such that fewer than n−d

balls cover the subset of B that maps into zero except

with a probability approaching zero as n → 0. By the

definition of box counting dimension, we realise that b

is a bound on the box counting dimension of the set

Φ−1
α (0) ⊂ B. The argument holds for all d > kr − r,

which therefore gives the bound in the lemma.

7) The above argument holds for all σ > 0 and therefore

holds for all Θb almost surely.

Proof: [Proof of Theorem 2.3] Let x1,x2 ∈ C, then

αx1, βx2 ∈ A if α, β ∈ R . Assume there were x1,x2, α, β
such that αx1 6= βx2 and Φαx1 = Φβx2. W.l.o.g. α 6= 0 so

that c = β
α . Then Φx1 = Φcx2. We can write cx2 = x1 +γb

for some γ and some b ∈ B. Φαx1 = Φβx2 implies therefore

that γΦb = 0. If γ = 0, then we would have γx2 = x1 which

is impossible by the assumption that αx1 6= βx2, therefore

γ 6= 0 which means that Φb = 0. By definition b is from a

bounded set of box counting dimension kmax − 1. But by the

previous lemma Φb 6= 0 for almost all Φ if M > 2d − 1,

from which the theorem follows.

APPENDIX II

PROOF OF THEOREM 2.4

Proof: [Proof of Theorem 2.4] The one to one property

implies that

Φ(xi − xj) 6= 0, (38)

for all xi 6= xj where xi,xj ∈ A.

Let B = {b = xi − xj : xi ∈ Si,xj ∈ Sj ,b 6= 0}, where

the subsets Si and Sj are chosen such that the dimension of

B is kmax. Φ(xi − xj) 6= 0 then implies that Φ(b) 6= 0.

For any set of kmax linearly independent vectors b1 ∈ B we

know that
∑

i αibi 6= 0 holds for all αi 6= 0. This implies

that the set of kmax vectors Φbi is also linearly independent.

This can be shown by contradiction. Assume Φbi is linearly

dependent, i.e. there exist αi 6= 0 such that
∑

i αi(Φbi) = 0.

By linearity, this would imply that Φ
∑

i αi(bi) = 0. Now
∑

i αi(bi) ∈ B. But none of the elements of B are in the null

space of Φ, so that Φb = 0 would imply
∑

i αi(bi) = b = 0.

But by the linear independence of the bi this is impossible if

αi 6= 0. Therefore, the Φbi are linearly independent and span

a kmax dimensional subspace of R
M , which is only possible

if M ≥ kmax.



VERSION: DECEMBER 4, 2008 10

APPENDIX III

PROOF OF THEOREM 2.6

For the Ai in the definition of the measure in the theorem,

we define Ci similarly to the definitions of C. Let the sets

Bi,j = {bi,j : bi,j = yi + yj ,yi ∈ Ci,yj ∈ Ai}. (39)

The sets Bi,j are then of dimension i+ j − 1.

Proof: [Proof of Theorem 2.6] If M > i+ j − 1, we can

apply Theorem 2.3 and almost all Φ do not map any subset

Bi,j to zero. If i + j − 1 ≥ M > k > i and assume that

without loss of generality i ≥ j, we have from Lemma 1.2

that the set for which Φb = 0, with b ∈ Bi,j has dimension

i + j − 1 −M < i, which by definition of the measure on

Ai has measure zero. Taking the union of these measure zero

events is also a measure zero event showing that for almost

all Φ, and almost all b, Φb 6= 0.

APPENDIX IV

PROOF OF THEOREM 3.3

The proof of Theorem 3.3 follows closely the approach set

out in [34] and [12].

Proof: [of Theorem 3.3] For a fixed x, any matrix Φ with

entries drawn i.i.d. form subgaussian distribution satisfies [12]

P (|‖Φx‖2
2 − ‖x‖2

2| ≥ ǫ‖x‖2
2) ≤ 2e−c M

2 ǫ. (40)

From lemma 5.1 in [34] we know that if this inequality holds,

then

(1 − δA(Φ))‖x‖2 ≤ ‖Φx‖2 ≤ (1 + δA(Φ))‖x‖2 (41)

holds with probability more than

1 − 2

(

12

δA(Φ)

)k

e−c
δA(Φ)

2 M , (42)

for any x from a single k dimensional subspace. A union

bound tells us that for L subspaces, the probability of failure

will be bounded by L times the probability of failure of the

single subspace from which the second part of the theorem

follows. The first part of the theorem is then a consequence

of the second part.

APPENDIX V

PROOF OF THEOREM 3.5

Proof: [of Theorem 3.5]

The proof of this theorem is based on the following inequal-

ity which we will show to hold for a particular subset of p
vectors from A.

1

K2
I

≤ ‖Φ(xi − xj)‖2
2

‖xi − xj‖2
2

≤ 1

ω2
p(A)

‖Φ(xi − xj)‖2
2 (43)

The first inequality is due to the definition of the Lipschitz

constants. The second inequality follows from the definition

of ωp(A), which guarantees the existence of p vectors taken

from A that satisfy the required bound.

The vectors xi are unit length. We require that ‖Φ(xi −
xj)‖2

2 ≤ K2
F . Therefore, the vectors yi = Φxi all lie within

a ball of radius KF and the vectors ŷi = yi

KF
lie in a ball of

unit radius. This, with inequality (43), shows that we require

‖ŷi − ŷj‖2
2 ≥ ω2

p(A)

K2
I
K2

F

for i 6= j. We therefore see that it

is necessary for the vectors ŷi to be separated by at least

d =

√

ω2
p(A)

K2
I K2

F

and we can use a packing argument to complete

the proof.

Lemma 5.1: We can pack p points within the unit ball in

R
M with a separation of d only if

M ≥ 1

ln(2/d+ 1)
ln(p). (44)

Proof: [of Lemma 5.1] A set of points within the unit

ball which constitutes such an d separated set, also constitutes

a d/2 packing. Consider the ball with radius 1+d/2. We need

a necessary condition on the number of d/2 balls which can

be packed into such a ball. We know that the volume of all

of the d/2 balls in such a packing must be smaller than the

total volume of the ball.

p Vol(B(d/2)) ≤ Vol(B1+d/2) (45)

p ≤ Vol(B1+d/2)

Vol(Bd/2)

p ≤ (1 + d/2)M

(d/2)M

p ≤ (2/d+ 1)M . (46)

Therefore, a necessary condition to be able to find such a

packing is that we have p ≤ (2/d+1)M balls, or, equivalently

that

M ≥ 1

ln(2/d+ 1)
ln(p). (47)

Using this lemma with d =
ωp(A)
KIKF

we get the necessary

condition that

ln(p)

M
≤ ln

(

2KIKF

ωp(A)
+ 1

)

. (48)

Theorem 3.5 follows then by recognising that 1 < 2KIKF

ωp(A) .
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