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ABSTRACT

When sampling signals below the Nyquist rate, efficient and accurate

reconstruction is nevertheless possible, whenever the sampling sys-

tem is well behaved and the signal is well approximated by a sparse

vector. This statement has been formalised in the recently devel-

oped theory of compressed sensing, which developed conditions on

the sampling system and proved the performance of several efficient

algorithms for signal reconstruction under these conditions. In this

paper, we prove that a very simple and efficient algorithm, known as

Iterative Hard Thresholding, has near optimal performance guaran-

tees rivalling those derived for other state of the art approaches.

Index Terms— Compressed Sensing, Iterative Hard Threshold-

ing, Sparse Inverse Problem

1. INTRODUCTION

Compressed sensing [1], [2], [3], [4] is a technique to sample fi-

nite dimensional signals below the Nyquist rate. A signal f from an

N < ∞ dimensional Hilbert space is sampled using M linear mea-

surements {〈f, φn〉}, where 〈·, ·〉 is the inner product and φn are

elements from the Hilbert space under consideration. Let x be the

vector of elements xi such that f =
PN

i=1 ψixi for some orthonor-

mal basis ψi of the signal space so that f and x are equivalent. Let

Φ ∈ R
M×N be the matrix with entries 〈ψi, φj〉 so that the observa-

tion can then be written as

y = Φx + e, (1)

where e is observation noise.

In compressed sensing, we take fewer measurements than the

dimension of the Hilbert space under consideration, that is,M < N .

The problem of recovering x from y is therefore underdetermined.

To overcome this problem, it is assumed that x is well approximated

by a K-sparse vector, that is, by a vector with only K non-zero

elements, where K < M . Under this assumption, the problem of

recovering x, given the samples y and the observation model Φ can

be posed as the following optimisation problem

x̂ = arg min
x:‖x‖0≤K

‖y − Φx‖2, (2)
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where ‖x‖0 stands for the number of non-zero elements in the vector

x. We are therefore looking through all vectors x with no more than

K non-zero elements to find that vector that minimises the squared

error ‖y − Φx‖2. Whilst this is an NP-hard optimisation problem

in general, several contributions have studied conditions on Φ that

allow this problem to be solved approximately using efficient algo-

rithms. We state two of these results in section 3, before deriving

similar results for an Iterative Hard Thresholding Algorithm in sec-

tion 4. We here derive the main results only. More details are avail-

able in our technical report on arXiv [5].

2. THEORETICAL PRELIMINARIES

Two preliminary issues have to be discussed. Firstly, a condition

on Φ used in the results of this paper is introduced and, secondly,

particular properties of best K-term approximations are stated.

2.1. Conditions on Φ

The analysis of algorithms for compressed sensing relies heavily on

a property1 of Φ known as the restricted isometry property (RIP).

The restricted isometry constant is the smallest quantity δK for

which the following inequalities hold [1]

(1 − δK)‖x‖2
2 ≤ ‖Φ̂x‖2

2 ≤ (1 + δK)‖x‖2
2 (3)

for all vectors x with no more thanK non-zero elements. If δK > 0,

the matrix Φ is said to satisfy the Restricted Isometry Property (RIP)

of order K.

Our results in this paper are based on a re-scaled matrix Φ =
Φ̂

1+δK

, which satisfies the following asymmetric isometry property

(1 − βK)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ ‖x‖2
2 (4)

for all K-sparse x, where βK = 1 − 1−δK

1+δK
.

Throughout this paper, when referring to the RIP, we mean

in general this slightly modified version for which we always use

the letter β. If we need to refer to the standard RIP, for the non-

normalised matrix Φ̂, we use the letter δ.

1Note that there exist matrices with this property whenever M ≥
cK log(N/K) for some constant c. For example, if we generate matrices
with M ≥ 36/7δK (ln(eN/K) + K ln(12/δK ) + ln(2) + t) rows, by
drawing the elements from an i.i.d. normal distribution, then it has a re-
stricted isometry constant of δK with probability of at least 1 − e−t [6].



2.2. Best K term approximations

Compressed sensing relies on the signal x to be well approximated

by a K-sparse vector. We write xK to mean the best K-term ap-

proximation to the vector x. The following results are stated here

without proof, which follow those presented in [7].

Lemma 1 (Needell and Tropp, Proposition 3.5 in [7]). Suppose we

have a matrix Φ that satisfies the inequality ‖ΦxK‖2 ≤ ‖xK‖2 for

all K-sparse vectors. For such a matrix and for all vectors x, the

following inequality holds

‖Φx‖2 ≤ ‖x‖2 +
1√
K

‖x‖1. (5)

Lemma 2 (Needell and Tropp, lemma 6.1 in [7]). Given any x,

consider the (any) best K-term approximation to x, denoted by xK .

Define the error between the best K-term approximation and x as

xr = x − xK and the ‘error’ term ẽ = Φxr + e, such that

y = Φx + e = ΦxK + ẽ. (6)

If Φ satisfies the restricted isometry property for sparsity K, then

the norm of the error ẽ can be bounded by

‖ẽ‖2 ≤ ‖x − xK‖2 +
1√
K

‖x − xK‖1 + ‖e‖2

(7)

3. BASIS PURSUIT, SUBSPACE PURSUIT AND COSAMP

Of all the methods proposed for the sparse recovery problem in com-

pressed sensing, two stand out in terms of the performance bounds

available. The first method is to solve the convex Basis Pursuit De-

noising optimisation proposed in [8] and the second one is the Com-

pressed Sensing Matching Pursuit (CoSaMP) algorithm [7]. Whilst

a detailed discussion on these approaches has to be omitted, we here

present the main theoretical results derived for these two approaches.

We have included these results here to show that, not only have

both algorithms similar performance guarantees under similar condi-

tions, but, importantly, the guarantees and conditions are also com-

parable to those derived in the next section for the Iterative Hard

Thresholding algorithm.

To summarise the results of the next two subsections, both, Basis

Pursuit De-noising and CoSaMP are able to estimate any vector x

from y = Φx + e if Φ has a bounded restricted isometry constant.

The accuracy of this estimate depends on the size of the error e as

well as on the error between x and its best K term approximation,

that is, if x is well approximated by a sparse vector, both algorithms

are able to calculate a good approximation to x.

3.1. Basis Pursuit De-Noising

Instead of solving the non-convex optimisation problem (2), Basis

Pursuit De-Noising [8] solves the convex optimisation problem

x
⋆ = min

x

‖x‖1 such that ‖y −Φx‖2 ≤ ǫ.

Due to the convexity of this problem, optimisation is much easier

than optimisation of (2) and several efficient algorithms have been

proposed over the years.

Candès [9] derived the following result for the quality of the

Basis Pursuit De-Noising solution.

Theorem 3 ([9]). If Φ has a restricted isometry constant of δ2K <
0.2, then the solution x⋆ to the convex Basis Pursuit De-Noising

optimisation problem with ǫ = ‖e‖2 obeys

‖x⋆ − x‖2 ≤ 8.5

»‖x − xK‖1√
K

+ ‖e‖2

–

. (8)

3.2. Subspace Pursuit and CoSaMP

Subspace Pursuit [10] and CoSaMP [7] are very similar algorithms

which share many of their theoretical properties. The following re-

sult, similar to the one derived for Basis Pursuit De-Noising, has

been derived for CoSaMP in [7].

Theorem 4 ([7]). Assume Φ has a restricted isometry constant of

δ4K ≤ 0.1, then, after at most 6(K + 1) iterations, CoSaMP pro-

duces an approximation x⋆ that satisfies

‖x⋆ − x‖2 ≤ 20

»

‖x − xK‖2 +
‖x − xK‖1√

K
+ ‖e‖2

–

. (9)

4. ITERATIVE HARD THRESHOLDING

The Iterative Hard Thresholding algorithm (IHTK) is the following

iterative procedure. Let x[0] = 0 and use the iteration

x
[n+1] = HK(x[n] + Φ

T (y − Φx
[n])), (10)

where HK(a) is the non-linear operator that sets all but the largest

(in magnitude) K elements of a to zero. If there is no unique such

set, a set can be selected either randomly or based on a predefined

ordering of the elements. Inspired by the work in [11], we first for-

mally studied convergence properties of this algorithm in [12]. In

this paper we prove that this algorithm has similar performance guar-

antees to Basis Pursuit De-Noising and CoSaMP.

4.1. Main Result

The main result is the following theorem that bounds the perfor-

mance of the algorithm for arbitrary (not necessary sparse) signals

x.

Theorem 5. Let x be any arbitrary vector, which is observed

through a linear measurement system Φ that satisfies the restricted

isometry property with β3K < 1/
√

32. Given the noisy observation

y = Φx + e, then after at most

‰

log2

„ ‖xK‖2

‖x − xK‖2 + ‖x − xK‖1/
√
K + ‖e‖2

«ı

(11)

iterations, IHTK calculates an estimate x⋆ that satisfies

‖x⋆ − x‖2 ≤ 6

»

‖x − xK‖2 +
‖x − xK‖1√

K
+ ‖e‖2

–

, (12)

where xK is the best K-term approximation to x.

4.2. Comparison to CoSaMP and Basis Pursuit De-Noising

Several remarks are in order. Firstly, for IHTK , we require β3K ≤
0.175, whilst for CoSaMP, δ4K ≤ 0.1 is required. Now, β and δ
are related as follows

β
2−β

= δ, therefore, IHTK requires δ3K ≤
0.0959 ≈ 0.1. As δ(k) is an increasing function of (k), the con-

dition on δ4K in the theorem for CoSaMP is somewhat stricter than

the condition on δ3K in the IHTK result.



Secondly, the convergence of IHTK is linear so that the num-

ber of iterations required depends logarithmically on the ‘signal to

noise ratio’
‖xK‖2

‖x−xK‖2+‖x−xK‖1/
√

K+‖e‖2

. To achieve the iteration

bound of 6(K + 1), given for CoSaMP, the algorithm requires the

solution to an inverse problem in each iteration, which is costly in

terms of the required computations. IHTK does not require the so-

lution to an inverse problem, instead, each iteration only requires the

application of the operators Φ and ΦT once each. In many practi-

cal applications, Φ is chosen such that these multiplications can be

computed efficiently2. CoSaMP can also be implemented using a

partial solution to the required inverse problems in which case the

iteration count guarantees become similar to the ones derived here

for IHTK .

Finally, for both, CoSaMP and IHTK , the results are in terms

of the error
h

‖x − xK‖2 + ‖x − xK‖1/
√
K + ‖e‖2

i

. Interest-

ingly, for Basis Pursuit De-Noising, the error only depends on

‖x − xK‖1/
√
K + ‖e‖2, but not on ‖x − xK‖2. As CoSaMP and

IHTK do calculate K-sparse approximation, it is clear that the best

attainable error will have to depend on the term ‖x − xK‖2. As

Basis Pursuit De-Noising does not necessarily give a sparse result,

this dependency does not seem to exist.

4.3. Optimality of Main Result

In fact, the results in this paper are optimal in the sense that we

cannot do substantially better, even if an oracle would give us the

support set of the K largest coefficients in x. To see this, let ΦK be

the sub-matrix of Φ containing only those columns associated with

theK largest coefficients in x. The best K-term approximation to x

can then be written as Φ
†
Ky, where the † signifies the pseudo inverse.

The error for such an oracle estimate would be

‖x −Φ
†
Ky‖2 ≤ ‖x − xK − Φ

†
KΦ(x − xK) − Φ

†
Ke‖2

≤ ‖x − xK‖2 + ‖Φ†
KΦ(x− xK)‖2 + ‖Φ†

Ke‖2

≤ ‖x − xK‖2 + ‖Φ†
K‖2‖Φ(x − xK)‖2

+‖Φ†
K‖2‖e‖2

≤
„

1 +
1√

1 − βK

«

‖x − xK‖2

+
1√

1 − βK

‖x − xK‖1√
K

+
1√

1 − βK

‖e‖2,

(13)

where the bound on ‖Φ†
K‖2 can be found in, for example, [7] and

where the bound on ‖Φ(x− xK)‖2 is due to lemma 1.

5. PROOF OF THE MAIN RESULT

Let us introduce the following notation.

• r[n] = xK − x[n],

• a[n+1] = x[n] +ΦT (y−Φx[n]) = x[n] +ΦT (ΦxK + ẽ−
Φx[n]),

• y[n+1] = HK(a[n+1]),

• Γ⋆
K = supp{xK},

2For example, using the fast Fourier transform.

• Γn = supp{x[n]},

• Bn+1 = Γ⋆
K

S

Γn+1

Of particular importance are the following sets. Γ⋆
K are the non-zero

elements in the best K term approximation to x, in effect, this is the

set we are striving to identify. The set Γn contains the indices for

the K non-zero elements in iteration n and finally, Bn is the union

of these two sets.

5.1. Preliminary lemmata

The results in this paper require the following lemmata. The first set

of tools bounds different operator norms involving sub-matrices of

Φ using the restricted isometry property. These results are known

and have been derived in, for example, [7]. We have to note that

the restricted isometry constant bounds (from above and below) the

largest and smallest singular values of all sub-matirces of Φ with K
columns. This directly implies the following inequalities. For all

index sets Γ with K = |Γ| and all Φ for which the RIP holds for

sparsity K we have the bounds

‖ΦT
Γy‖2 ≤ ‖y‖2, (14)

(1 − β|Γ|)‖xΓ‖2 ≤ ‖ΦT
ΓΦΓxΓ‖2 ≤ ‖xΓ‖2. (15)

We here use the notation ΦΓ and xΓ to refer to the sub-matrices and

sub-vectors of Φ and x containing only those columns (elements)

with indices in the set Γ.

We also need the following two lemmata.

Lemma 6. If a matrix Φ satisfies RIP for sparsity K, then for all

sets Γ with |Γ| = K we have the bound

‖(I − Φ
T
ΓΦΓ)xΓ‖2 ≤ βK‖xΓ‖2. (16)

This result has been established as a by-product in the proof of

Proposition 3.2 in [7], though again for the slightly different defini-

tion of the restricted isometry property.

The next inequality can also be found in [7].

Lemma 7. If a matrix Φ satisfies RIP for sparsity K, then for any

two disjoint sets Γ and Λ (i.e. Γ
T

Λ = ∅) for which |Γ S

Λ| = K
we have the following inequality

‖ΦT
ΓΦΛxΛ‖2 ≤ βK‖xΛ‖2. (17)

The next result can be found in, for example, [9].

Lemma 8. For any two orthogonal vectors r1 and r2, the following

holds

‖r1‖2 + ‖r2‖2 ≤
√

2‖r1 + r2‖2. (18)

Proof. Note that ‖r1‖2 + ‖r2‖2 is the one norm of the vector

[‖r1‖2‖r2‖2]
T

. Using standard norm inequalities, we have

‚

‚

‚

‚

»

‖r1‖2

‖r2‖2

–‚

‚

‚

‚

1

≤
√

2

‚

‚

‚

‚

»

‖r1‖2

‖r2‖2

– ‚

‚

‚

‚

2

. (19)

Due to orthogonality, ‖r1‖2
2+‖r2‖2

2 = ‖r1+r2‖2
2, which completes

the proof.



5.2. Proof of the error bound in theorem 5

Proof. We want to bound the error

‖x − x
[n+1]‖2 ≤ ‖x − xK‖2 + ‖xK − x

[n+1]‖2. (20)

We now bound the right hand term using the triangle inequality

‖xK − x
[n+1]‖2 ≤ ‖xK,Bn+1 − a

[n+1]

Bn+1‖2 + ‖x[n+1]

Bn+1 − a
[n+1]

Bn+1‖2.

Crucially, as indicated by the subscripts above, the error xK−x[n+1]

is supported on the set Bn+1 = Γ⋆
K

S

Γn+1. Furthermore, x[n+1]

is the best K-term approximation to a
[n+1]

Bn+1 and is therefore a bet-

ter approximation than xK so that ‖x[n+1] − a
[n+1]

Bn+1‖2 ≤ ‖xK −
a

[n+1]

Bn+1‖2. We therefore have

‖xK − x
[n+1]‖2 ≤ 2‖xK,Bn+1 − a

[n+1]

Bn+1‖2. (21)

We can now expand a
[n+1]

Bn+1 and find that

‖xK − x
[n+1]‖2

≤ 2‖xK,Bn+1 − x
[n]

Bn+1 − Φ
T
Bn+1Φr

[n] − Φ
T
Bn+1 ẽ‖2

≤ 2‖r[n]

Bn+1 −Φ
T
Bn+1Φr

[n]‖2 + 2‖ΦT
Bn+1 ẽ‖2

= 2‖(I − Φ
T
Bn+1ΦBn+1)r

[n]

Bn+1

−Φ
T
Bn+1ΦBn\Bn+1r

[n]

Bn\Bn+1‖2

+2‖ΦT
Bn+1 ẽ‖2

≤ 2‖(I − Φ
T
Bn+1ΦBn+1)r

[n]

Bn+1‖2

+2‖(ΦT
Bn+1ΦBn\Bn+1)r

[n]

Bn\Bn+1‖2

+2‖ΦT
Bn+1 ẽ‖2

As the setBn \Bn+1 is disjoint fromBn+1 and as |Bn S

Bn+1| ≤
3K, we can make use of (14), (16) and (17) and the fact that β2K ≤
β3K

‖xK − x
[n+1]‖2 (22)

≤ 2β2K‖r[n]

Bn+1‖2 + 2β3K‖r[n]

Bn\Bn+1‖2 + 2‖ẽ‖2 (23)

≤ 2β3K

“

‖r[n]

Bn+1‖2 + ‖r[n]

Bn\Bn+1‖2

”

+ 2‖ẽ‖2 (24)

Furthermore r
[n]

Bn+1 and r
[n]

Bn\Bn+1 are orthogonal so that

lemma 8 gives

‖xK − x
[n+1]‖2 ≤

√
8β3K‖r[n]‖2 + 2‖ẽ‖2. (25)

If we choose β3K < 1√
32

we have the bound

‖xK − x
[n+1]‖2 = ‖r[n+1]‖2 < 0.5‖r[n]‖2 + 2‖ẽ‖2, (26)

which we iterate, so that

‖xK − x
[k]‖2 < 2−k‖xK‖2 + 4‖ẽ‖2 (27)

and

‖x − x
[n+1]‖2 ≤ 2−k‖xK‖2 + ‖(x − xK)‖2 + 4‖ẽ‖2

≤ 2−k‖xK‖2 + 5‖(x − xK)‖2

+4
1√
K

‖(x − xK)‖1 + 4‖e‖2

We are therefore guaranteed to reduce the error to below any multiple

c of ‖(x − xK)‖2 + ‖(x − xK)‖1/
√
K + ‖e‖2, as long as c > 5.

For example, c = 6 implies that we require that

2−k‖xK‖2 ≤ ‖(x − xK)‖2 + ‖(x − xK)‖1/
√
K + ‖e‖2, (28)

i.e. that

2k ≥ ‖xK‖2

‖(x − xK)‖2 + ‖(x − xK)‖1/
√
K + ‖e‖2

, (29)

which in turn implies the second part of the theorem.

6. CONCLUSIONS

Finite signals that are well approximated with sparse vector repre-

sentations can be sampled below the Nyquist rate. If the sampling

system satisfies the so called restricted isometry property and has

a small restricted isometry constant, Compressed Sensing theory

states that algorithms such as Basis Pursuit De-noising and CoSaMP

can be used to recover the signal from the observations.

In this paper, we have shown that under similar conditions on

the restricted isometry constant, a very simple and efficient Iterative

Hard Thresholding algorithm has similar uniform performance guar-

antees than Basis Pursuit De-noising and CoSaMP. In particular, all

algorithms are guaranteed to recover a vector x from noisy measure-

ments y = Φx + e with similar error guarantees. In fact, this type

of performance is optimal up to the constants.
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