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ABSTRACT. Sparse signal expansions represent or approximate a signal
using a small number of elements from a large collection of elementary wave-
forms. Finding the optimal sparse expansion is known to be NP hard in general
and non-optimal strategies such as Matching Pursuit, Orthogonal Matching
Pursuit, Basis Pursuit and Basis Pursuit De-noising are often called upon.
These methods show good performance in practical situations, however, they
do not operate on the ℓ0 penalised cost functions that are often at the heart
of the problem. In this paper we study two iterative algorithms that are min-
imising the cost functions of interest. Furthermore, each iteration of these
strategies has computational complexity similar to a Matching Pursuit itera-
tion, making the methods applicable to many real world problems. However,
the optimisation problem is non-convex and the strategies are only guaran-
teed to find local solutions, so good initialisation becomes paramount. We
here study two approaches. The first approach uses the proposed algorithms
to refine the solutions found with other methods, replacing the typically used
conjugate gradient solver. The second strategy adapts the algorithms and we
show on one example that this adaptation can be used to achieve results that
lie between those obtained with Matching Pursuit and those found with Or-
thogonal Matching Pursuit, while retaining the computational complexity of
the Matching Pursuit algorithm.

1. Introduction

Sparse signal approximations have over the last decade gained in popularity
in several areas of signal processing. For example, a wide range of signal
processing applications such as source coding [1], [2], denoising [3], source
separation [4] and pattern analysis [5] have benefited from progress made in
this area. A sparse signal approximation models a signal x from a Hilbert
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space H as

x =
∑

i

φiyi + e,

where {φi} is a set of elements from H, commonly called the dictionary,
which span H, i.e. which contain a basis for H and where e ∈ H is an
approximation error. In this paper we are dealing primarily with sparse
approximations as opposed to sparse representations, i.e. we allow for a
non-zero error e in the above signal model. We commonly use a matrix
like notation, using the operator Φ and coefficient sequence y, and write
Φy =

∑

i φiyi.

1.1 Useful Dictionary Properties

Before proceeding, we introduce some useful concepts and properties of dic-
tionaries, which will help us in the development below. The spark of a
dictionary is defined in [6] as

Definition 1 : Spark. spark(Φ) is the size of the smallest subset of ele-
ments from {φi} such that the elements in this subset are linearly dependent.

For example if all M dimensional subsets of elements from {φi} are
linearly independent, but there exist a subset of size M + 1 in which the
elements are dependent, then the spark of Φ is M + 1.

We also need the following definitions

Definition 2 : Cumulative Coherence. The Cumulative Coherence or
Babel function [7] is defined as

µ1(m) := sup
|Γ|=m

sup
ω/∈Γ

∑

γ∈Γ

|〈φω, φγ〉|. (1.1)

A useful bound on the cumulative coherence is given in terms of the
coherence

Definition 3 : Coherence.

µ1(1) = µ0 := sup
ω 6=γ

|〈φω, φγ〉|. (1.2)

A bound on the Cumulative Coherence is then

µ1(m) ≤ mµ0. (1.3)

See for example [7]. Note, that contrary to common practice, in the above
definitions and throughout this paper we do not assume that ‖φi‖2 = 1.
However, on occasion we use the weaker condition that ‖φi‖2 = c for all i.

In the proof of [8, Theorem 9.10] Mallat also introduced a useful prop-
erty of Φ. Under the condition that {φi} contains a basis for the signal
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space and with the assumption that ‖φi‖2 > c > 0, there exists a constant
β(Φ) > 0 such that

sup
i

|〈φi, r〉| ≥ β‖r‖. (1.4)

The proof of this property in [8] assumes that ‖φi‖2 = 1, but the assumption
‖φi‖2 > c > 0 and a simple re-normalisation argument allow the proof to
carry forward to the more general case used here.

1.2 Problem Formulation

In this paper we look at two incarnations of the sparse approximation prob-
lem. The ℓ0 regularised optimisation problem is defined as follows: for given
x and Φ, find coefficients y minimising the cost function

Cℓ0(y) = ‖x − Φy‖2
2 + λ‖y‖0, (1.5)

where ‖y‖0 is defined as |Γ1(y)| and throughout this paper we use Γ1(y) =
{yi : yi 6= 0} as the set of non-zero coefficients. |Γ1(y)| is the size of this set
so that ‖y‖0 counts the number of non-zero coefficients.

The M-sparse problem is a constrained optimisation problem of the
form

min
y

‖x − Φy‖2
2 subject to ‖y‖0 ≤ M, (1.6)

i.e now we constrain the number of non-zero coefficients to be below a certain
value1.

Solving (1.6) is known to be NP-hard in general [9, 10]. Therefore, two
common themes have been adopted to approximately solve the problem,
greedy optimisation strategies and relaxation of the cost function. Greedy
strategies, such as Matching Pursuit (MP) type algorithms [11], are rela-
tively fast iterative procedures that have been used extensively in practical
applications. The performance of these methods is however not guaranteed
in general and only under very strict conditions can they be shown to opti-
mise the above cost function [12] [13]. Relaxation methods replace the ‖y‖0

constraint by an almost everywhere differentiable and often convex cost func-
tion as in the the Basis Pursuit De-noising method [15] or the more general
models optimised by the FOCUSS algorithm [14]. These approaches offer
better performance in many cases, but can also be computationally more
demanding.

1It is worth pointing out that the two problems are related in that there exist a λ,
which depends on x and M , such that the solution to the ℓ0 regularised problem
is the same as that to the M -sparse problem. However, it is also important to
realise that the algorithms derived here can have quite different performance, even
though they have a very similar structure.
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Basis Pursuit De-noising [15] relaxes the ℓ0 penalty and replaces it with
the convex ℓ1 penalty. This leads to the convex optimisation problem

min
y

‖x − Φy‖2
2 + λ‖y‖1. (1.7)

Recently, iterative thresholding algorithms have been proposed to solve
this problem [16], [17], [18], [19], [20] and [21]. A similar algorithm to
directly solve the ℓ0 regularised optimisation problem had previously been
put forward by Kingsbury in [22] and more recently, a slight variation of this
was used in [23]. All of these methods are particular instances of a more
general class of iterative thresholding algorithms [24], [25] and [26]. A good
general overview over iterative thresholding methods can be found in [27].
Related convergence results can also be found in [28].

1.3 Paper Overview

In section 2 we derive the algorithm used in [23] using ideas from [16] and in
section 3 a novel variation of the algorithm is derived to solve the M-sparse
problem. Importantly, we present the following novel results with regard to
both algorithms.

• We show that the algorithms are guaranteed not to increase the cost
functions (1.5) and (1.6) respectively.

• We give conditions specifying the fixed points of the algorithms.

• We give a simple condition guaranteeing the convergence of the
methods to local optima of the cost functions (1.5) and (1.6).

• We analyse the convergence speed of the methods.

• We give bounds on the error and the number of non-zero elements
of the fixed points.

These two algorithms work directly on the cost functions (1.5) and
(1.6). As these functions are non-convex, we find that the algorithms only
converge to local optima. Even worse, we find that the fixed points of the
first algorithm are not guaranteed to be sparse. Numerical studies con-
firm that the initialisation of the methods is important. For example, when
initialising the coefficients with zero, the algorithms were often found to
perform worse than Matching Pursuit. We therefore suggest two strategies
for a successful application of the methods. The first strategy is to use the
methods in conjunction with other methods such as Matching Pursuit or
Basis Pursuit De-noising. The solutions found with these algorithms are in
general not even local optima of (1.5) and (1.6). In fact, the solutions can
always be improved by orthogonally projecting the signal onto the space
defined by the non-zero components. This projection is typically done using
a conjugate gradient algorithm. By replacing the conjugate gradient algo-
rithm with the methods proposed here one does not only calculate such a
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projection. More importantly, the proposed algorithms can also change the
support set of the solution, while at the same time guaranteeing to improve
it. This is shown numerically in subsections 4.1 and 4.2.

The other suggested approach is a slight modification of the algorithms.
This method varies the number of retained coefficients in each iteration,
starting with a single coefficient and adding additional ones as the algorithm
progresses. On one particular example, we show that if the number of non-
zero coefficients is increased in each iteration, the performance is comparable
to Matching pursuit, whilst by increasing the number of non-zero coefficients
more slowly allows us to improve the performance. This approach is studied
in subsection 4.3.

This paper can be read on three different levels: the casual reader,
interested in the algorithms and their properties, but less curious about the
more formal statements of these properties nor in the exact derivation of the
algorithms can read the digest subsections given at the beginning of the next
two sections; more formal derivations of the algorithms and statements of
the main theorems and lemmata comprise the rest of the next two sections;
the keen reader, interested also in the proofs, is referred to the appendices.

2. An iterative algorithm for the ℓ0 regularised

problem

2.1 Digest: the Iterative Hard-Thresholding Algorithm

To solve the optimisation problem

min
y

‖x − Φy‖2
2 + λ‖y‖0, (2.1)

we derive the following iterative algorithm

yn+1 = Hλ0.5(yn + ΦH(x− Φyn)), (2.2)

where Hλ0.5 is the element wise hard thresholding operator

Hλ0.5(yi) =

{

0 if |yi| ≤ λ0.5

yi if |yi| > λ0.5.
(2.3)

This algorithm will be called the iterative hard-thresholding algorithm. We
show that under the assumption that ‖Φ‖2 < 1 the algorithm is guaranteed
not to increase (1.5) and in fact converges to a local minimum of (1.5).
Furthermore, the asymptotic convergence rate is linear and, assuming the
set {φi} contains a basis for the signal space and ‖φi‖2 > c > 0, then at any
fixed point y⋆ the error satisfies the bound

‖x − Φy⋆‖2 ≤ λ0.5

β(Φ)
, (2.4)

where β(Φ) is a constant depending only on Φ.
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2.2 Optimisation Transfer

Instead of optimising (1.5), let us introduce a surrogate objective function,
as proposed in [29].

CS
ℓ0(y, z) = ‖x − Φy‖2

2 + λ‖y‖0 − ‖Φy − Φz‖2
2 + ‖y − z‖2

2. (2.5)

If ‖Φ‖2 < 1, then this surrogate objective function is a majorisation of the
objective function and minimisation of the surrogate function leads to a ma-
jorisation minimisation (MM) algorithm [30]. Because Cℓ0(y) = CS

ℓ0
(y,y),

optimising (2.5) with respect to y will then decrease the original cost func-
tion (1.5). The surrogate objective function (2.5) can be rewritten as

CS
ℓ0(y, z) =

∑

i

[y2
i − 2yi(zi + φH

i x− φH
i Φz) + λ|yi|0]

+ ‖x‖2
2 + ‖z‖2

2 − ‖Φz‖2
2,

where |yi|0 is one if yi 6= 0 and zero otherwise. Now the yi are decoupled.
Therefore, the minimum of (2.5) can be calculated by minimising with re-
spect to each yi individually. To derive the minimum, we distinguish two
cases, yi = 0 and yi 6= 0. In the first case, the element wise cost is (ignoring
the constant terms) 0. In the second case the cost is (again ignoring the
constant terms) y2

i − 2yi(zi + φH
i x − φH

i Φz) + λ, the minimum of which is
achieved at y⋆

i = zi + φH
i x− φH

i Φz.
Comparing the cost for both cases, i.e

0 if yi = 0

−(zi + φH
i x− φH

i Φz)2 + λ if yi = zi + φH
i x− φH

i Φz,

we see that the minimum of (2.5) is attained at

y = Hλ0.5(z + ΦH(x − Φz)),

where we use the element-wise hard thresholding operator given in (2.3).
Note that the minimum need not be unique whenever zi + φH

i x − φH
i Φz =

λ0.5. However, using a strict inequality in the definition of the thresholding
operator as done here guarantees a unique update.

The iterative hard thresholding algorithm is now defined as

yn+1 = Hλ0.5(yn + ΦH(x− Φyn)). (2.6)

In the rest of this section we will often simplify the notation and introduce
the non-linear operator Ty = Hθ(y + ΦH(x − Φy)). This algorithm, pre-
viously used in [23], is a thresholded version of the well known Landweber
iteration [31]. However, we found that this algorithm is not stable in general.
In this paper we show that a sufficient requirement for the above algorithm
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to converge is that the eigenvalues of the linear operator (I − ΦHΦ) are
0 < eig(I − ΦHΦ) ≤ 1. As pointed out by one of the reviewers to an earlier
version of this manuscript, the bound form above is satisfies because ΦHΦ
is positive semi-definite. To satisfy the lower bound, we then require that
‖Φ‖2 < 1.

2.3 Relationship Between Optimisation of the Surrogate Func-

tion and the Original Cost Function

In this subsection we give an important lemma

Lemma 1. Assume ‖Φ‖2 < 1 and let yn+1 = Hθ(y
n +ΦH(x−Φyn)), then

the sequences (Cℓ0(y
n))n and (CS

ℓ0
(yn+1,yn))n are non-increasing.

This lemma is a trivial consequence following from the majorisation
minimisation (MM) framework [30]. A proof is included in appendix A for
completeness.

This lemma states that the cost function (1.5) does not increase from
iteration to iteration, or, more bluntly, using the algorithm cannot lead to
worse results than not using the algorithm.

2.4 Specifying the Fixed Points

As the algorithm has multiple fixed points, it is important to analyse these
in more detail.

Lemma 2. Define the sets Γ0 = {i : y⋆
i = 0} and Γ1 = {i : |y⋆

i | > λ0.5}.
A necessary and sufficient condition for a point y⋆ to be a fixed point of
algorithm (2.2) is that for each φi,

|φH
i (x − Φy⋆)|

{

= 0 if i ∈ Γ1

≤ λ0.5 if i ∈ Γ0.

The proof of this result is straightforward and we give it here as it has
some merit in itself.

Proof. A fixed point is any y⋆ such that y⋆ = T (y⋆). Looking at this
equality element wise and inserting the algorithm we have

y⋆
i = Hλ0.5(y⋆

i + φH
i (x − Φy⋆)).

If y⋆
i = 0, this equality holds if and only if |φH

i (x − Φy⋆)| ≤ λ0.5. Similarly
for i ∈ Γ1 we have

y⋆
i = y⋆

i + φH
i (x− Φy⋆),

where we have dropped the thresholding operator, as y⋆
i 6= 0. Again, this

holds if and only if φH
i (x − Φy⋆) = 0.
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One of the main results in this section relates the fixed points with the
cost function (1.5)

Lemma 3. Assume ‖Φ‖2 < 1, then a fixed point y⋆ = Ty⋆ is a local
minimum of (1.5).

The proof of this lemma is a bit more involved and can be found in
appendix B. By a local minimum we mean that perturbing y⋆ by an infinites-
imal small amount (in any direction) will not decrease the cost function.

Before proceeding, we answer another important question, whether the
set of fixed points includes the optimal solution. To show that this is in fact
true we appeal to theorem 12 in [7], which we enhance here by adding an
additional property.

Theorem 1 (Tropp [7]: Theorem 12). For an input signal x and
a threshold λ0.5, denote by yopt the global minimum of the optimisation
problem (1.5). Define Γ0 = {i : yopt

i = 0} and Γ1 = {i : yopt
i 6= 0}.

• ∀i ∈ Γ1, |yopt
i | ≥ λ0.5

• ∀i ∈ Γ0, φH
i (x− Φyopt) ≤ λ0.5

• ∀i ∈ Γ1, φH
i (x− Φyopt) = 0,

The third condition implies that the error is orthogonal to the atoms φH
i

when i ∈ Γ1. In other words, the signal is projected orthogonally onto the
space spanned by these atoms. This condition is not given in [7] but can be
proven easily by the argument in appendix C.

Comparing the conditions in theorem 1 to the fixed point conditions of
the algorithm in lemma 2 we have

Theorem 2. Assume ‖Φ‖2 < 1, then the optimal solution to the opti-
misation problem (1.5) belongs to the fixed points of the iterative algorithm
defined by (2.2).

2.5 Convergence

We have shown in the previous section that the iterative hard threshold-
ing algorithm is guaranteed not to increase the cost function in (1.5). In
this subsection we state an even more important property of the algorithm,
namely, the algorithm converges to a local minimum of (1.5).

More formally, we have the following theorem

Theorem 3. If Cℓ0(y
0) < ∞ and if ‖Φ‖2 < 1, then the sequence (yn)n

defined by the iterative procedure in (2.2) converges to a local minimum of
(1.5).

Note that the condition Cℓ0(y
0) < ∞, which we use in lemma D.1, is

only importance in infinite dimensional spaces, where it implies that only a
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finite number of y0
i are non-zero at any one time. The proof of the above

theorem is given in appendix D.

2.6 Bounds on error and number of non-zero coefficients

Lemma 2 gives a necessary and sufficient condition. We can, for example,
choose a subset of {φi} which constitute a basis for the signal space. In this
case, we can choose yΓ such that x − ΦΓyΓ = 0. This solution satisfies the
necessary condition of the lemma which means that the fixed points of the
algorithm are not guaranteed to be sparse.

Note also that the algorithm is guaranteed to find a local minimum of
the cost function. This implies that the local minima of the cost function
are not required to be sparse either.

Clearly, having no guarantee on the sparsity of the solution is not in
general a desirable property of an algorithm to find sparse representations.
One would therefore want to modify the algorithm to impose constraints
on the number of non-zero coefficients of the solution. Such an approach
is studied in the next section. In the rest of this section we will present a
bound on the reconstruction error achieved with the proposed method.

A bound on the approximation error is stated in

Lemma 4. Assume that ‖Φ‖2 ≤ 1, that {φi} contains a basis for the signal
space and that ‖φi‖2 > c > 0, then a tight bound for the approximation error
‖x − Φy⋆‖2 achieved at a fixed point y⋆ is

‖x − Φy⋆‖2 ≤ λ0.5

β(Φ)
, (2.7)

where β(Φ) > 0 is such that supi |φH
i x| ≥ β(Φ)‖x‖2 holds for all x.

The proof can be found in appendix E.

2.7 Speed of convergence

The convergence proof of the algorithm relied on the fact that after a finite
number of iterations, the selected subset remains fixed, in which case the
algorithm simplifies to the standard Landweber iteration [31]. Therefore the
asymptotic convergence speed is the linear convergence of the Landweber
algorithm [31] given by

‖yn − y⋆‖2 ≤ ‖I − ΦH
Γ1

ΦΓ1
‖(n−m)
2 ‖ym − y⋆‖2 (2.8)

Note that we have expressed this result in terms of the matrices ΦH
Γ1

ΦΓ1

containing the inner products between the {φi} associated with non-zero
elements. Assuming that ‖φi‖2 = c for all i and that c2 > µ1(M − 1),
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where M is the size of the set Γ1, we can use results form [12] to bound the
eigenvalues of I − ΦH

Γ1
ΦΓ1

with the cumulative coherence, leading to

‖yn − y⋆‖2 ≤ [1 − (c2 − µ1(M − 1))]
n−m

2 ‖ym − y⋆‖2. (2.9)

Because the cumulative coherence is an increasing function of M , it can be
seen that the bound decreases, the smaller the selected sub-dictionary.

3. An iterative algorithm for the M-sparse

problem

3.1 Digest: the M-Sparse Algorithm

In this section we turn to the M-sparse problem

min
y

‖x − Φy‖2
2 subject to ‖y‖0 ≤ M, (3.1)

and derive the following iterative algorithm

yn+1 = HM(yn + ΦH(x − Φyn)), (3.2)

where HM is now a non-linear operator that only retains the M coefficients
with the largest magnitude

HM (yi)

{

0 if |yi| < λ0.5
M (y)

yi if |yi| ≥ λ0.5
M (y).

(3.3)

The threshold λ0.5
M (y) is set to the M th largest absolute value of yn+ΦH(x−

Φyn), if less than M values are non-zero we define λ0.5
M (y) to be the smallest

absolute value of the non-zero coefficients. We call this algorithm the M-
sparse algorithm.

If ‖Φ‖2 < 1 and assume {φi} contains a basis for the signal space and
‖φi‖2 > c > 0, then the algorithm is guaranteed not to increase (1.6) and
converges to a local minimum of (1.6). As before, the asymptotic conver-
gence rate is linear. If ‖φi‖2 = c for all i and if c2 > µ1(M − 1), then at the
fixed point y⋆ the error satisfies the bound

‖x − Φy⋆‖2 ≤ c‖x‖2

c2 − µ1(M − 1)
. (3.4)

3.2 Optimisation Transfer

We again use optimisation transfer to derive the iterative algorithm. The
surrogate objective function is then

CS
M (y, z) = ‖x − Φy‖2

2 − ‖Φy − Φz‖2
2 + ‖y − z‖2

2. (3.5)
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In order for the surrogate cost to majorise the cost function we again require
that ‖Φ‖2 < 1. Note that we do not use a regularisation term here, however,
in the minimisation of the surrogate cost function we now require that the
constraint ‖y‖0 ≤ M is satisfied. We again have CM (y) = CS

M (y,y). As in
the previous section we write equation (3.5) as

CS
M (y, z) ∝

∑

i

[y2
i − 2yi(zi + φH

i x − φH
i Φz)].

This again de-couples the yi. If we ignore the constraint on the number
of non-zero coefficients we would get the standard Landweber minimum of

y⋆
i = zi + φH

i x− φH
i Φz.

At this minimum, the cost function would be

CS
M (y⋆, z) ∝

∑

i

[y⋆2
i − 2y⋆

i (zi + φH
i x − φH

i Φz)] =
∑

i

−y⋆2
i .

The constrained minimum of the surrogate cost function is then achieved by
choosing the M largest (in absolute value) coefficients y⋆

i .
The minimum of (2.5) is thus attained at

y = HM (z + ΦH(x − Φz)),

where now the thresholding operator HM chooses the threshold depending
on its argument.

The iterative M-sparse algorithm is therefore

yn+1 = HM(yn + ΦH(x − Φyn)). (3.6)

Again, a sufficient requirement for the above algorithm to converge is that
the eigenvalues of the linear operator (I−ΦHΦ) are 0 < eig(I −ΦHΦ) ≤ 1,
that is ‖Φ‖2 < 1.

3.3 Relationship Between Optimisation of the Surrogate Func-

tion and the Original Cost Function

We show that the algorithm reduces the cost function CM (yn). It is im-
portant to stress that we here require ‖y0‖0 ≤ M , which is guaranteed by
the fact that we choose only the largest M coefficients in each iteration. (In
cases where there are more than one coefficient with equal magnitude, such
that the M largest coefficients are not uniquely defined, we assume that the
algorithm selects from the offending coefficients using a predefined order.)
The equivalent to lemma 1 then holds

Lemma 5. Assume that ‖Φ‖2 < 1 and let yn+1 = HM (yn+ΦH(x−Φyn)),
then the sequences (CM (yn))n and (CS

M (yn+1,yn))n are non-increasing.

The proof to this lemma is exactly the same as that for lemma 1 given
in appendix A, with the cost functions chosen appropriately.
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3.4 Specifying the Fixed Points

It is again important to analyse the fixed points of this algorithm, which
can be done using a similar approach to that taken above. Note, however,
we have now a slightly different lemma.

Lemma 6. Assume that ‖Φ‖2 < 1 and define the sets Γ0 = {i : y⋆
i = 0}

and Γ1 = {i : |y⋆
i | > λ0.5

M (y⋆)}, then y⋆ is a fixed point of algorithm (3.2) if
and only if

|φH
i (x − Φy⋆)|

{

= 0 if i ∈ Γ1

≤ λ0.5
M (y⋆) if i ∈ Γ0.

Furthermore, if {φi} contains a basis for the signal space and if ‖φi‖2 > c >
0, then ‖y⋆‖0 = M unless x − Φy⋆ = 0, in which case CM(y⋆) = 0.

Proof. A fixed point is defined as y⋆ = T (y⋆) and after insertion of
the algorithm we get y⋆

i = HM (y⋆
i + φH

i (x − Φy⋆)), where the threshold
λ0.5

M (y) > 0 depends on φH
i (x−Φy⋆). For i ∈ Γ0, y⋆

i = 0, which holds if and
only if |φH

i (x−Φy⋆)| < λ0.5
M (y). For i ∈ Γ1 we have y⋆

i = y⋆
i +φH

i (x−Φy⋆).
Again, this holds if and only if φH

i (x − Φy⋆) = 0.

Assume that ‖y⋆‖0 < M , i.e. that |Γ1| < M . The algorithm can
only choose a threshold such that less than M elements are zero if less
than M elements of y⋆ + ΦH(x − Φy⋆) are non-zero. This implies that
φH

i (x − Φy⋆) = 0 for all i ∈ Γ0. By the discussion above, we also require
that φH

i (x − Φy⋆) = 0 for all i ∈ Γ1, i.e. φH
i (x − Φy⋆) = 0 for all i. By

assumption, the {φi} contain a basis for the signal space and ‖φi‖2 > c > 0.
There must therefore be a β(Φ) > 0, such that supi |φH

i r| ≥ β(Φ)‖r‖2 holds
for all r. But this implies that CM (y⋆) = ‖x− Φy⋆‖2 = 0.

We can further show that

Lemma 7. Assume ‖Φ‖2 < 1, then a fixed point y⋆ = Ty⋆ is a local
minimum of the constrained optimisation problem (1.6).

The proof can be found in appendix F.

3.5 Convergence

We also have a convergence proof for the M-sparse algorithm

Theorem 4. If ‖Φ‖2 < 1 and assume {φi} contains a basis for the signal
space and ‖φi‖2 > c > 0, then the sequence (yn)n defined by the iterative
M-sparse algorithm (3.2) converges to a local minimum of (1.6).

The proof can be found in appendix G.
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3.6 Bounds on error and sparsity

The sparsity of the fixed points of the algorithm is naturally given by the
parameter M .

A similar bound on the approximation error as given in lemma 4 can
be found

Lemma 8. Assume that ‖Φ‖2 < 1, that {φi} contains a basis for the signal
space and that ‖φi‖2 > c > 0, then a tight bound for the approximation error
‖x − Φy⋆‖2 achieved at a fixed point y⋆ is

‖x − Φy⋆‖ ≤ λ0.5
M (y⋆)

β(Φ)
, (3.7)

where β(Φ) > 0 is such that supi |φH
i x| ≥ β(Φ)‖x‖2 holds for all x.

The proof is identical to the proof of lemma 4. The difference is now
that λ0.5(y⋆) is a function of the fixed point itself. We therefore need a
lemma bounding λ0.5(y⋆). This is done in

Lemma 9. Assume that for all i, ‖φi‖2 = c. If µ1(M − 1) < c2, then we
have the following bound

λ0.5
M (y⋆) ≤ c‖x‖2

c2 − µ1(M − 1)
. (3.8)

The proof of this lemma can be found in appendix H.

3.7 Speed of convergence

Again, if the algorithm does not converge to an exact signal representation,
then after a certain number of iterations (say m), the algorithm will not
change the subset (see proof of theorem 4) and we have the same convergence
properties as for the algorithm of section 2

‖yn − y⋆‖2 ≤ ‖I − ΦH
Γ1

ΦΓ1
‖(n−m)
2 ‖ym − y⋆‖2, (3.9)

and, as in subsection 2.7, under the condition that ‖φi‖2 = c for all i and
that c2 > µ1(M − 1),

‖yn − y⋆‖2 ≤ [1 − (c2 − µ1(M − 1))]
n−m

2 ‖ym − y⋆‖2. (3.10)

4. Numerical Studies

4.1 Minimising the cost function

In this subsection we study the ability of the algorithms to improve on results
calculated with Matching Pursuit [11], which is reviewed in appendix I. We
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chose this algorithm for comparison as it is relatively fast and therefore
used in many applications. We show that the use of the above algorithms
in conjunction with Matching Pursuit often leads to an improvement in the
results. Note that Matching Pursuit does not give the minimum squared
error solution achievable with the selected subset, which is known to be
achieved by an orthogonal projection of the signal onto the selected elements.
We therefore compare our results here to those found with Matching Pursuit
followed by an orthogonal projection. This projection was calculated using
the pseudo-inverse, however, in most situations it would be more efficient to
use conjugate gradient type algorithms. The results are shown in Figures 1
(iterative hard-thresholoding) and 2 (M-sparse).

The results in Figure 1 were calculated as follows. We randomly gen-
erate 1 000 dictionaries of size 128 × 256 with elements distributed uni-
formly on the unit sphere. From each of these we randomly selected 128
elements. The coefficients were generated by drawing i.i.d. zero mean
and unit variance Gaussian variables. However, values with a magnitude
below λ0.5 =

√
2 erf−1(M/128) were set to zero. This threshold ensures

that on average, only M of the coefficients were non-zero. We choose
M ∈ {2, 11, 20, 29, 38, 47, 56, 65, 74, 83, 92, 101, 110, 119, 128}. This proce-
dure ensured that we used the same average number of non-zero coefficients
as in the experiment below while ensuring that the coefficients are above
λ0.5 as required by theorem 1. We repeated this procedure four times and
added different levels of zero mean Gaussian noise giving Signal to Noise
Ratios (SNR) of 120 dB, 80 dB, 40 dB and 0 dB.

Matching Pursuit was stopped when the minimum in the cost func-
tion ‖x− Φy‖2

2 + λ‖y‖0 was reached2. These coefficients were then used to
initialise the iterative hard-thresholding algorithm. In Figure 1, the stars
show the ratio between the signal energy and the cost function after orthog-
onal projection of the Matching Pursuit results (averaged over the 1 000
realisations). The squares are the results for the iterative hard-thresholding
algorithm. The lower panels show the difference between the results. We
here show the signal to cost ratio (as well as the difference) in dB.

The results in Figure 2 where calculated similarly, the only difference
being that the coefficients were generated using M Gaussian coefficients at
random locations. This time the coefficient values were not restricted in
magnitude. We then run the Matching Pursuit algorithm stopping after M
elements had been selected. We used these results to initialise the M-sparse
algorithm. In Figure 2 the stars are the ratio between the signal energy
and the cost function averages for the projected Matching Pursuit results.
The squares are the results for the thresholding algorithm. The lower pan-

2We calculated the cost function in each iteration of Matching Pursuit and, once
the cost function started to increase, we disregarded the last selected element.
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FIGURE 1 The top panels show a comparison between Matching Pursuit followed by or-
thogonal projection (stars) and additional use of the iterative hard-thresholding algorithm
(squares) for different amounts of noise added to the signal. The y-axis shows the ratio
between the signal energy and the cost function ‖x − Φy‖2

2 + λ‖y‖0 expressed in dB and
the x-axis shows the ratio of non-zero elements used to generate the signal to the signal
dimension. The lower panels show the difference between the results in the upper panels.

els again show the difference between the results. We here show the ratio
‖x‖2

2/‖x−Φy‖2
2, again expressed in dB. In the left three panels of Figure 2,

the results show a common behaviour. This is due to the algorithms being
able to find the correct atoms when M is small. For increasing M, however,
this happens less often and the average performance decrease until, for M
approaching the dimension of y, the performance improves again. This is
due to the fact that for large M, arbitrary signals can be approximated well.
On the other hand, for low SNR, the signal is dominated by the noise and
there is in effect no good sparse approximation of the signal. Therefore, for
small M, the approximation performance is poor as shown on the rightmost
plot in Figure 2.

From these results we can draw the following conclusions

• When working with the regularised cost function, we see that, for
the example used here, the iterative hard-thresholding algorithm can
improve performance only marginally.

• For the M-sparse problem, we see that, for the example used here,
the M-sparse algorithm improves the Matching Pursuit results signif-
icantly more than orthogonal projection onto the selected elements
alone.

• In figure 4.1, it can be seen that for low M, both, Matching Pursuit
and the M-sparse algorithm reach a signal approximation that has
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FIGURE 2 The top panels show a comparison between Matching Pursuit followed by
orthogonal projection (stars) and additional use of the M-sparse algorithm (squares) for
different amounts of noise added to the signal. The y-axis shows the ratio between the
signal energy and the cost function ‖x − Φy‖2

2 expressed in dB and the x-axis shows the
ratio of non-zero elements used to generate the signal to the signal dimension. The lower
panels show the difference between the results in the upper panels.

the same error as the signal to noise ratio. This suggests that in
these cases both algorithms often recover exactly the elements used
to generate the signal. Importantly, the M-sparse algorithm was
found to be able to find the exact representations even in cases in
which Matching Pursuit alone failed. This behaviour is studied in
more detail in the next subsection.

• Apart from the increased ability to find the exact representation, in
the conducted experiment, the M-sparse algorithm also improves the
SNR by several dB for only mildly sparse representations.

4.2 Exact Recovery

In some applications, such as compressive sampling [20], it is desirable to
exactly recover the elements used to construct the observation x. In order
to analyse this we conducted experiments similar to those above. We gener-
ated M-sparse signals with M ∈ {30, 40, 50, 60} using Gaussian coefficients,
however, this time we did not add noise to the signals.

We then repeated the first experiment reported above for a range of
λ0.5 values. The second experiment was also a repetition of the second
experiment in the previous subsection, but using M ∈ {30, 40, 50, 60}.

We calculated the number of correctly identified elements (True Posi-
tives) as well as the number of elements incorrectly identified as being non-
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FIGURE 3 Comparison of the iterative hard-thresholding algorithm and matching pursuit
in terms of the number of correctly identified elements used to generate the test signal
and the number of elements identified not used to generate the test signal. We here
show the results for different levels of sparsity, i.e. (from top left to bottom right) M ∈
{30, 40, 50, 60}. The solid lines are the results for the iterative hard-thresholding algorithm
and the dotted lines are the results for Matching Pursuit.

zero (False Positives). These quantities are here normalised by the number
of non-zero and zero elements in the true coefficient vector respectively.

The averaged results for the two algorithms are shown in Figures 3 and
4. The solid lines are the results from the iterative algorithms proposed
in this paper, while the dotted lines are the results found with Matching
Pursuit alone. The four different lines in each panel correspond to (from
top left to bottom right) M ∈ {30, 40, 50, 60}.

These results suggest the following conclusions

• Both algorithms improve the ability to correctly identify elements.

• For less sparse signals this advantage becomes smaller.

4.3 Stepping through lambda vs. MP

Instead of calculating the pseudo inverse in each iteration in orthogonal
Matching Pursuit, an iterative method could be envisaged to approximate
the pseudo inverse solution. This idea is similar to a strategy suggested
in [32], which can also be used for the Landweber based algorithms of this
paper. The M sparse algorithm can be run for different values of M, starting
from M = 1. After S iterations M is increased by one. If the algorithm is
initialised with a zero vector and if S is large enough such that the algorithm
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FIGURE 4 Comparison of the M-sparse algorithm and matching pursuit in terms of the
number of correctly identified elements used to generate the test signal and the number
of elements identified not used to generate the test signal. We here show the results for
different levels of sparsity, i.e. (from top left to bottom right) M ∈ {30, 40, 50, 60}. The
solid lines are the results for the M-sparse algorithm and the dotted lines are the results
for Matching Pursuit.

converges to the minimum error solution for each M, then this strategy is
very similar to orthogonal Matching Pursuit. The difference with orthogonal
Matching Pursuit is that the M sparse algorithm does not necessarily use
the same subset of elements at each stage.

The other extreme would be to set S = 1. Then the algorithm is similar
to Matching Pursuit with a similar computational complexity, however, pre-
viously selected atoms are now updated in subsequent iterations. Another
difference is that if the columns of Φ are not of unit length, then the value
of a newly selected atom is not the same for both algorithms.

One could also use the iterative hard thresholding algorithm with a
threshold depending (through some heuristic) on the current residual norm.
Such a strategy would be similar to the StOMP algorithm proposed in [33],
but again with the difference that we would not necessarily calculate the
exact orthogonal projection for each threshold and that we allow the set of
selected elements to change from iteration to iteration.

To test these ideas, we generated 1 000 signals x by randomly choosing
64 elements from Φ generated as above, again without added noise. We then
averaged the performance of Matching Pursuit, Orthogonal Matching Pur-
suit and the strategy in which the number of retained elements is increased
by one every S ∈ {1, 2, 5, 10, 50} iterations. The approximation error in dB
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FIGURE 5 Signal to Noise Ratio in dB for different numbers of non-zero elements. The
dotted line are the results with the matching pursuit algorithm and the dashed line are
the results obtained with orthogonal matching pursuit. The solid lines are the results of
the iterative approach in which the number of retained coefficients is increased stepwise
any S iterations. The numbers in the figure indicate which S was used for each curve. The
results are averaged over 100 randomly generated dictionaries Φ ∈ R

128×256 and signals
with 64 non-zero Gaussian coefficients.

is shown in Figure 5 for approximations with a varying number of non-zero
coefficients.

The following observations can be made for the particular example used
here

• For S = 1, the proposed method shows marginally worse perfor-
mance than Matching Pursuit if less than 30 coefficients are non-
zero. If more than 30 coefficients are non-zero, the proposed method
outperforms Matching Pursuit.

• If S is increased, the performance was also found to increase and for
S = 2 the method outperforms Matching Pursuit if more than 18
elements are non-zero.

• Using S = 50 we see that the proposed algorithm outperforms even
orthogonal Matching Pursuit if the number of non-zero values is
between 25 and 94. This is a sign that the algorithm is not just an
iterative orthogonal Matching Pursuit implementation.
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5. Conclusion

In this paper we derived two algorithms that operate directly on the ℓ0 reg-
ularised cost function and the M-sparse constrained optimisation problem,
respectively. To our knowledge, these are the only algorithms (apart from
exhaustive search), that have this property3. We have derived novel theoret-
ical results for the methods. These results reveal that the algorithms have
multiple fixed points making a straightforward application difficult. How-
ever, we here argued for the use of the algorithms in two contexts. Firstly,
the algorithms can be used to improve the results calculated with other
methods such as Matching Pursuit. In this case we have shown that the
algorithms might offer benefits that cannot be explained by orthogonal pro-
jection onto the selected elements alone, i.e. they often also discover better
sets of elements to describe the signal. In our experiments, the improved
performance was apparent both in terms of the cost function of interest as
well as in terms of identification of the elements that were used to gener-
ate the signal. Secondly, by running the M-sparse algorithm for increasing
values of M, we have shown that the method can be used on its own. In
the example used here, the performance was found to range from the per-
formance of Matching Pursuit to that of orthogonal Matching Pursuit and
was found to even beat the latter in certain circumstances.

Most importantly, the methods are comparable to Matching Pursuit
in the computational cost of each iteration. Furthermore, many of the fast
computational techniques suggested for Matching Pursuit [34] can be used
also for the proposed algorithms. The proposed algorithms are therefore
applicable to very large signals and dictionaries so that they can potentially
be used in many real-world applications.

A. Proof of lemma 1 and lemma 5

Proof.

C(yn+1) ≤ C(yn+1) + ‖(yn+1 − yn)‖2
2 − ‖Φ(yn+1 − yn)‖2

2

= CS(yn+1,yn)

≤ CS(yn,yn)

= C(yn)

≤ C(yn) + ‖(yn − yn−1)‖2
2 − ‖Φ(yn − yn−1)‖2

2

= CS(yn,yn−1).

3Though it is now well known that under certain conditions, other algorithms can
also find the optimal solutions to the problems studied here.
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The first inequality is a consequence of the condition ‖Φ‖2 < 1, which
ensures that the operator (I − ΦHΦ) is positive definite. The first equality
is the definition of the surrogate cost function, which therefore majorises
C(y). The second inequality is due the fact that yn+1 is the minimiser of
CS(y,yn).

B. Proof of lemma 3

Proof. Given a fixed point y⋆ = Ty⋆ and any small perturbation |∂hi| < ǫ,
for some ǫ > 0, we show that Cℓ0(y

⋆ + ∂h) > Cℓ0(y
⋆). However, we first

show ∃ ǫ > 0 : ∀ ∂h with |∂hi| < ǫ the following inequality holds

CS
ℓ0(y

⋆ + ∂h,y⋆) ≥ CS
ℓ0(y

⋆,y⋆) + ‖∂h‖2
2.

CS
ℓ0(y

⋆ + ∂h,y⋆) − CS
ℓ0(y

⋆,y⋆) =
∑

i

(yi + ∂hi)
2 − 2(yi + ∂hi)yi − 2(yi + ∂hi)φ

H
i (x − Φy⋆)

− y2
i + 2y2

i + 2yiφ
H
i (x − Φy⋆) − λ|yi|0 + λ|yi + ∂hi|0.

After simplification of the above equation, we split the summation into two
parts, one for Γ0 = {i : yi = 0} and one for Γ1 = {i : yi 6= 0}. We get

CS
ℓ0(y

⋆ + ∂h,y⋆) − CS
ℓ0(y

⋆,y⋆) =

‖∂h‖2
2 +

∑

Γ0

λ|∂hi|0 − 2∂hiφ
H
i (x − Φy⋆)

+
∑

Γ1

−2∂hiφ
H
i (x − Φy⋆)

For a fixed point y⋆ the last line is zero as stated in lemma 2. For the
summation over Γ0 we have to consider two cases, if ∂hi = 0, then this
term is zero. If ∂hi 6= 0, then choosing |∂hi| ≤ | λ

2(φH

i
(x−Φy))

| guarantees

the non-negativity of this term. Note that we also need the condition that
|∂hi| ≤ yi for all i ∈ Γ1 such that yi − ∂hi 6= 0. This condition is required
when splitting the cost function |yi + ∂hi|0. Therefore ∃ ǫ : ∀ ∂h, |∂hi| ≤
ǫ, CS

ℓ0
(y⋆ + ∂h,y⋆) ≥ CS

ℓ0
(y⋆,y⋆) + ‖∂h‖2

2. Using this we get

Cℓ0(y
⋆ + ∂h) = CS(y⋆ + ∂h,y⋆) − ‖∂h‖2

2 + ‖Φ∂h‖2
2

≥ CS
ℓ0(y

⋆ + ∂h,y⋆) − ‖∂h‖2
2 ≥ CS

ℓ0(y
⋆,y⋆) = Cℓ0(y

⋆)
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C. Proof of condition 3 in theorem 1

Proof. For the subset of atoms Γ1 in the theorem, let ropt = x − Φyopt

and split the error into the error within the subspace spanned by ΦΓ1
and

its orthogonal complement, ropt = r
opt
Γ1

+ r
opt
Γ0

, where r
opt
Γ0

is orthogonal to all

φi when i ∈ Γ1, i.e φH
i r

opt
Γ0

= 0 for i ∈ Γ1.

We now show that r
opt
Γ1

= 0, which proves the theorem. For any fixed

Γ1 an optimum of the cost function requires that ‖x − ΦΓ1
yΓ1

‖2
2 = ‖r‖2

2

is minimal. Using Pythagoras ‖r‖2
2 = ‖rΓ1

‖2
2 + ‖rΓ0

‖2
2. For any fixed Γ1,

changing yΓ1
only affects the first term. Also, by definition, rΓ1

lies in the
span of φi, with i ∈ Γ1 and by appropriate choice of yΓ1

can be set to zero,
at which point the error is minimal. This holds for all sets Γ1 and holds
therefore also for the set of non-zero elements in yopt, implying that r

opt
Γ1

= 0.

D. Proof of Theorem 3

The proof of theorem 3 is based on the following lemma.

Lemma D.1. ∀ ǫ > 0, ∃ N such that ∀ n > N, ‖yn+1 − yn‖2
2 ≤ ǫ.

Proof. We show that
∑N

n=1 ‖yn+1 − yn‖2
2 converges, which implies the

lemma [35, Theorem 3.23]. This is done by showing that
∑N

n=1 ‖yn+1−yn‖2
2

is monotonically increasing and bounded. We have monotonicity by

N−1
∑

n=1

‖yn+1 − yn‖2
2 + ‖yN+1 − yN‖2

2 ≥
N−1
∑

n=1

‖yn+1 − yn‖2
2.

and boundedness follows from

N
∑

n=0

‖yn+1 − yn‖2
2 ≤ 1

c

N
∑

n=0

(‖(yn+1 − yn)‖2
2 − ‖Φ(yn+1 − yn)‖2

2)

≤ 1

c

N
∑

n=0

[Cℓ0(y
n) − Cℓ0(y

n+1)]

=
1

c
(Cℓ0(y

0) − Cℓ0(y
N+1))

≤ 1

c
Cℓ0(y

0),

(D.1)

where c is a lower bound on the spectrum of the linear operator (I−ΦHΦ),
which by assumption is strictly greater than zero. The second inequality is
taken from the proof of Lemma 1.
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Proof of theorem 3. In lemma D.1 take ǫ < λ. If |yn
i | > λ0.5 and

yn+1
i = 0, then ‖yn+1 − yn‖2

2 ≥ λ, which by lemma D.1 is impossible for
n > N for some N . Therefore, for large N , the set of zero and non-zero
coefficients will not change and |yn

i | > λ0.5,∀i ∈ Γ1, n > N . For yn
i , i ∈

Γ1, the algorithm then reduces to the standard Landweber algorithm with
guaranteed convergence [31]. Note that the largest (smallest) eigenvalue of
(I − ΦHΦ) will not increase (decrease) if we delete columns from Φ (see
for example Theorem 4.3.15 in [36]) ensuring that the eigenvalue constraint
required for the Landweber convergence is satisfied.

Also, by lemma 3 the fixed point is a local minimum of (1.5).

E. Proof of lemma 4

Proof. From lemma 2 we have

‖ΦH(x − Φy⋆)‖∞ ≤ λ0.5. (E.1)

Define β(Φ) > 0 such that supi |φH
i x| ≥ β(Φ)‖x‖2 holds for all x. Then

β(Φ)‖(x−Φy⋆)‖2 ≤ ‖ΦH(x−Φy⋆)‖∞ ≤ λ0.5, from which the lemma follows.

F. Proof of lemma 7

Proof. Again ‖y⋆‖0 ≤ M due to the constraint. We want to show that

CM (y⋆ + ∂h) ≥ CM (y⋆),

for any small perturbation |∂hi| < ǫ, for some ǫ > 0. If we restrict the
solution to the support of y⋆, then y⋆ is the minimum squared error solution
[31]. Now the support of ∂h might contain elements that are not in the
support of y⋆. If ‖y⋆‖0 < M , then by lemma 6 C(y⋆) = ‖x − Φy⋆‖2

2 = 0,
which is a fixed point of the algorithm. Otherwise ‖y⋆‖0 = M , therefore, to
enforce the constraint ‖y⋆ +∂h‖0 ≤ M , if ∂h contains an element not in the
support of y⋆ it also needs to include an element within the support of y⋆

with opposite value to that in y⋆, say y⋆
i . This value is strictly larger than

zero, so we can chose y⋆
i > 2ǫ > 0. Therefore, we can always chose ǫ small

enough such that a perturbation of a fixed point with radius smaller than ǫ
does not satisfy the constraint on ‖y‖0.

G. Proof of Theorem 4

Proof. We distinguish two possible cases.
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Case 1: The support of yn is the same for all n > N , for some N . In this
case, the set of non-zero coefficients does not change and the convergence
follows from the convergence of the Landweber algorithm as in the proof of
theorem 3.

Case 2: There exist infinitely many n such that yn+1 and yn have
different support. Now lemma D.1 also holds for the M-sparse algorithm.
Therefore, for any ǫ > 0, there is an N such that ∀ n > N, ‖yn+1−yn‖2 ≤ ǫ,
which implies that |yn+1

i − yn
i | ≤ ǫ. With the thresholding operator Hλ0.5

M

and using the abbreviation rn = x− Φyn, we have

|yn+1
i − yn

i | = |Hλ0.5

M

(yn
i + φH

i rn) − yn
i | ≤ ǫ.

For any n, we can group the indices into four disjoint sets, depending on
whether yn+1

i and yn
i are zero or not. If both yn+1

i and yn
i are nonzero, then

we can drop the thresholding operator such that |φH
i rn| = |yn+1

i − yn
i | ≤ ǫ.

For the other three cases, we distinguish two possibilities. If there is
any yn

γ = 0, but yn+1
γ 6= 0, then we must have |yn+1

γ | ≤ ǫ, which implies that

λ0.5
M ≤ ǫ. In this case, for all other yn

i and yn+1
i , assume both are zero, then

|φH
i rn| ≤ λ0.5

M ≤ ǫ, while for yn
i 6= 0 and yn+1

i = 0, we have |yn
i | ≤ ǫ and

|yn
i + φH

i rn| ≤ λ0.5
M ≤ ǫ, which implies that |φH

i rn| ≤ 2ǫ.

It now remains to look at the other possibility in which there is no
γ such that yn

γ = 0 and yn+1
γ 6= 0. This can only happen if the size of

the support set decreases. By the definition of the algorithm, this implies
that yn

i + φir
n = 0 for all i ∈ Γ0, where Γ0 is the set of zero elements in

yn+1. There are now two remaining possibilities. If yn
i = 0 and yn+1

i = 0,
then φir

n = 0. Otherwise, if yn
i 6= 0 but yn+1

i = 0, then yn
i = −φir

n and
|φir

n| = |yn
i | ≤ ǫ.

We have therefore shown that for all ǫ > 0 there is an N such that for
all n > N and for all i

|φH
i rn| ≤ 2ǫ.

Furthermore, if the {φi} contain a basis for the signal space and if ‖φi‖2 >
c > 0, then there is a β > 0 such that supi〈φi, r〉 ≥ β‖r‖2. We can now
choose a decreasing sequence of ǫ approaching zero, which means |φH

i rn|
approaches zero. But this then implies that ‖rn‖2 approaches zero and any
point y⋆, such that r⋆ = x − Φy⋆ = 0 is a fixed point of the algorithm as
well as a minimum of (1.6).

H. Proof of lemma 9

Let us first prove

Lemma H.1. Assume that for all i, ‖φi‖2 = c. Let G = ΦH
Γ ΦΓ be a matrix

with the inner products between the element φi with i ∈ Γ for |Γ| ≤ M and
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suppose that µ1(M − 1) < c2. Then

‖G−1‖∞ ≤ 1

c2 − µ1(M − 1)
. (H.1)

Proof. Write Ĝ = 1
c2

G. Note that G is hermitian and therefore ‖G‖1 =
‖G‖∞. Using the same reasoning as that in [12, equation (12)] then gives

‖G−1‖∞ =
1

c2
‖Ĝ−1‖∞ =

1

c2
‖

∞
∑

k=0

(I − Ĝ)k‖∞

≤ 1

c2

∞
∑

k=0

‖(Ĝ − I)‖k
∞ =

1

c2 − c2‖(Ĝ − I)‖∞

≤ 1

c2 − µ1(M − 1)
. (H.2)

We can now give

Proof of lemma 9. Let y⋆ be supported on Γ. The same argument
used in the proof of the last condition of theorem 1 shows that ΦΓy

⋆
Γ has

to be an orthogonal projection onto the span of φi, i ∈ Γ. An argument
similar to that in [6] shows that µ(M − 1) < c2 implies that M < spark(Φ).
Therefore, the unique orthogonal projection can be written using matrix
notation y⋆

Γ = (ΦH
Γ ΦΓ)−1ΦH

Γ x. By the definition of λ0.5
M (y⋆), we then have

λ0.5
M (y⋆) ≤ ‖(ΦH

Γ ΦΓ)−1ΦH
Γ x‖∞ (H.3)

≤ ‖(ΦH
Γ ΦΓ)−1‖∞‖ΦH

Γ x‖∞
≤ ‖(ΦH

Γ ΦΓ)−1‖∞c‖x‖2.

Proposition H.1 then bounds the first term on the right proving the lemma.

I. Matching Pursuit and Orthogonal Matching

Pursuit.

Matching Pursuit (MP) [11] is a greedy iterative algorithm that calculates
a sparse approximation using the following steps

1. Initialise r0 = x,y0 = 0

2. αi = 〈rn,φi〉
‖φi‖2

2

3. imax = argi max |αi|
4. yn

imax
= yn−1

imax
+ αimax
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5. rn = rn−1 − φimax
αimax

6. iterate from 2 until stopping criterion is fulfilled.

Orthogonal Matching Pursuit (OMP) [8] is a variation of MP in which
in each iteration the coefficient vector is the orthogonal projection of the
signal onto the dictionary elements selected up to this iteration.

1. Initialise r0 = x,y0 = 0,Γ0
1 = ∅

2. αi = 〈rn,φi〉
‖φi‖2

2

3. imax = argi max |αi|
4. Γn

1 = Γn−1
1 ∪ imax

5. yn = Φ†
Γn

1

x

6. rn = x − Φyn

7. iterate from 2 until stopping criterion is fulfilled.

Here Φ†
Γn

1

is the pseudo-inverse of the sub-dictionary ΦΓn

1
.

Orthogonal matching pursuit is normally implemented using QR or
Cholesky factorisation and is computationally more demanding than Match-
ing Pursuit. However, the projection ensures that the algorithm selects a
new element in each iteration and that the error is minimal for the currently
selected set of elements.
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