
VERSION: FEBRUARY 19, 2009 1

Normalised Iterative Hard Thresholding;

guaranteed stability and performance
Thomas Blumensath and Mike E. Davies

Abstract—Sparse signal models are used in many signal
processing applications. The task of estimating the sparsest
coefficient vector in these models is a combinatorial problem
and efficient, often sub-optimal strategies have to be used. Fortu-
nately, under certain conditions on the model, several algorithms
could be shown to efficiently calculate near optimal solutions.
In this paper, we study one of these methods, the so called
Iterative Hard Thresholding algorithm. We are here interested in
the application of this method to real world problems, in which
it is not known in general, whether the conditions used in the
performance guarantees are satisfied or not. We suggest a simple
modification to the algorithm that guarantees the convergence of
the method, even in a regime in which the theoretical condition is
not satisfied. With this modification, empirical evidence suggests
that the algorithm is faster than many other state of the
art approaches whilst showing similar performance. What is
more, the modified algorithm retains theoretical performance
guarantees similar to the original algorithm.

Index Terms—Sparse Signal Modelling, Compressed Sensing,
Iterative Hard Thresholding, Sparse Inverse Problems

I. INTRODUCTION

Sparse signal models have been popular in signal processing

for several years due to their applicability to a wide range of

diverse signal processing problems, from source separation [2],

de-noising [3], coding [4], pattern recognition [5] to sampling

[6].

The problem can be formulated as follows. Let y ∈ R
M be

an observed vector. Given a matrix Φ ∈ R
M×N , with more

columns than rows, that is with N > M , we are asked to find

a vector x in which most elements are zero and such that Φx

approximates y, that is, such that ‖y−Φx‖2 is small.

Compressed sensing [6] is a special case of sparse signal

modelling. In compressed sensing, we assume that a signal f
has an orthonormal expansion f =

∑N

n=1 xnψn, where most

of the xn are zero or negligibly small. Instead of sampling

f using traditional sampling theory using N samples, com-

pressed sensing proposes to use M < N linear measurements

ym = 〈φm, f〉. Collecting the observations into a vector, we

IDCOM & Joint Research Institute for Signal and Image Processing, The
University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9
3JL, UK, Tel.: +44 (0) 131 651 3492, Fax.: +44 (0) 131 650 6554, e-mail:
thomas.blumensath@ed.ac.uk, mike.davies@ed.ac.uk

This research was supported by EPSRC grants D000246/2 and
EP/F039697/1. MED acknowledges support of his position from the Scottish
Funding Council and their support of the Joint Research Institute with the
Heriot-Watt University as a component part of the Edinburgh Research
Partnership.

Some of the work presented here has previously been presented in [1].
c© This work might be submitted to the IEEE for possible publication.

Copyright may be transferred without notice, after which this version may no
longer be accessible.

can then write the sampling model as

y = Φx + e, (1)

where e is observation noise and where x is the vector con-

taining the elements xn. The matrix Φ has entries 〈φm, ψn〉.
In order to recover the signal f or, what is equivalent, the

vector x, we assume that x is sparse, that is, we have a sparse

inverse problem. For example, under the assumption that we

know that x is approximately K-sparse, that is, that x is well

approximated with a vector with only K non-zero elements,

we could pose the following optimisation problem.

x⋆ = argmin
x : ‖x‖0≤K

‖y−Φx‖2. (2)

In words, we are looking for a vector that minimises the

approximation error ‖y−Φx‖2, but we constrain the search to

those vectors x, that have no more than K non-zero elements.

Note that the notation ‖x‖0 refers to the number of non-zero

elements in the vector x.

Unfortunately, solving the above optimisation is a combi-

natorial problem for which no universally efficient strategy is

known. Instead, sub-optimal algorithms are used. Importantly,

under certain conditions (such as the restricted isometry prop-

erty discussed below), many of these approaches are guaran-

teed to perform well. For example, convex optimisation can be

used to find near optimal estimates of x [7] and similar bounds

have been derived for estimates found by greedy algorithms

such as Compressed Sensing Matching Pursuit (CoSaMP) [8],

Subspace Pursuit [9], Iterative Hard Thresholding [10] and the

method in [11]. One advantage of the greedy approaches is that

they are often faster than the convex optimisation methods.

Furthermore, they can also be used to recover signals with

more complex structures than sparsity, such as tree sparse

signals [12].

The theoretical guarantees are predominantly worst case

bounds and the condition under which the performance guar-

antees hold cannot be verified in a computationally efficient

manner. Therefore, in practice, one typically runs the algo-

rithms without explicit knowledge of whether the guarantees

are satisfied or not. Luckily, many algorithms perform surpris-

ingly well in a regime in which the theory does not hold and

it is therefore imperative that the algorithms are robust to a

violation of these theoretical conditions, that is, we at least

require the algorithms to be stable.

Whilst previous papers [13] [10] have derived strong the-

oretical guarantees for the Iterative Hard Thresholding al-

gorithm, we here introduce a modification that guarantees

stability. We include a step size parameter and suggest an

approach to determine the step size that guarantees that the

VERSION: FEBRUARY 19, 2009 2

normalised algorithm always converges. Importantly, with this

modification, the algorithm is competitive to other state of

the art approaches. What is more, we also show that this

modification still allows performance guarantees similar to

those of the unmodified algorithm.

II. ITERATIVE HARD THRESHOLDING

In a series of papers [14], [13] and [10], we studied

theoretical properties of an algorithm termed Iterative Hard

Thresholding (IHTK). This algorithm was inspired by the

work in [15].

The algorithm proceeds as follows. Let x0 = 0 and use the

iteration

xn+1 = HK(xn + ΦT (y −Φxn)), (3)

where HK(a) is the non-linear operator that sets all but the

largest (in magnitude) K elements of a to zero. If there is

no unique such set, a set can be selected either randomly or

based on a predefined ordering of the elements.

A. Conditions on Φ

All our results are based on properties of the matrix Φ

and in particular, on the so called restricted isometry property

(RIP) [6] of Φ. A matrix Φ satisfies the (symmetric) RIP of

order K , if there exists a δK < 1 such that

(1 − δK)‖x‖22 ≤ ‖Φ̂x‖22 ≤ (1 + δK)‖x‖22 (4)

for all vectors x with no more than K non-zero elements. The

smallest δK for which the above inequalities hold is called the

restricted isometry constant.

As stated above, there is no computationally efficient al-

gorithm to calculate the restricted isometry constant for a

given matrix. However, it is known that for different random

constructions, matrices of certain dimensions have a small

isometry constant with high probability. For example, if M >
cK log(N/K) for some constant c, then, if the entries of Φ

are drawn from an i.i.d. Gaussian distribution with variance

1/M , or if the entries of Φ are either 1/M or −1/M with

equal probability, then the matrix will have a small restricted

isometry constant with high probability [16] [17]. Exact ex-

pressions relating the constant c and the probability with which

δK attains a given value can be calculated explicitly.

B. Convergence

Our previous papers concentrated on theoretical properties

of the algorithm. In [14], convergence was studied and the

following result obtained.

Theorem 1. If Φ spans R
M and if ‖Φ‖2 < 1, then the

Iterative Hard Thresholding algorithm converges to a local

minimum of the cost function ‖y−Φx‖2 under the constraint

that x is K-sparse.

This result guarantees stability of the algorithm in the sense

that the approximation error is guaranteed to decrease and

the estimate xn converges to some fixed point. However, the

theorem does not tell us anything about the quality of this

fixed point.

C. Signal Recovery Guarantee

A result that bounds the quality of the solution of the

Iterative Hard Thresholding algorithm was derived in [10].

Theorem 2. Given a noisy observation y = Φx + e,

where x is an arbitrary vector. Let xK be the best K-term

approximation to x. If Φ has restricted isometry property with

δ3K < 1/
√

32, then, at iteration n, IHTK will recover an

approximation xn satisfying

‖x− xn‖2 ≤ 2−n‖xK‖2 + 6ǫ̃K , (5)

where

ǫ̃K = ‖x− xK‖2 +
1√
K
‖x− xK‖1 + ‖e‖2. (6)

Furthermore, after at most

n⋆ =

⌈

log2

(‖xK‖2
ǫ̃K

)⌉

(7)

iterations, IHTK estimates x with accuracy

‖x− xn⋆‖2 ≤ 7

[

‖x− xK‖2 +
1√
K
‖x− xK‖1 + ‖e‖2

]

.

(8)

More generally, if δ3K < 1/
√

8, then there exists a finite

constant c, such that

‖x− xn⋆‖2 ≤ c
[

‖x− xK‖2 +
1√
K
‖x− xK‖1 + ‖e‖2

]

,

(9)

with c→∞ as δ3K → 1/
√

8.

Whilst this result does not guarantee that the algorithm

converges to a single point, it nevertheless guarantees that

the algorithm will reach a neighbourhood of the best K-term

approximation of any x. How close the algorithm comes to

this optimum depends on how well x can be approximated

with a K-sparse vector.

D. Discussion on these results.

Both, the symmetric restricted isometry property, as well

as the Iterative Hard Thresholding algorithm are sensitive to

a re-scaling of the matrix Φ. This is clearly an undesirable

property. What is more, empirical evidence suggests that if

the conditions in the above theorems fail, the IHTK algorithm

often becomes unstable.

To demonstrate this behaviour, we conducted the following

experiment. We generated 128 by 256 matrices Φ (drawing

the entries from i.i.d. Gaussian distributions) and generated K-

sparse vectors by drawing the K non-zero elements from an

i.i.d. Gaussian distribution. Varying K from 2 to 64 (in steps

of 2) we averaged the results over 1 000 problem realisations.

We then compared to different matrix normalisations, we

normalised Φ such that ‖Φ‖2 = 1 and we normalised the

columns of Φ so that they had unit length (which approx-

imately ensures that the RIP condition is symmetric). The

results of applying the Iterative Hard Thresholding algorithm

are shown in figure 1, where we present the fraction of cases

in which we could recover the true support of a K sparse

vector. The dotted line shows the results for the algorithm

VERSION: FEBRUARY 19, 2009 3

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

sparsity K/M

pr
ob

ab
ili

ty
 o

f
ex

ac
t r

ec
ov

er
ty

Fig. 1. Exact recovery performance. Comparison between ℓ1 minimisation
(dashed), IHTK where ‖Φ‖2 = 1 (dotted) and IHTK where Φ has unit
norm columns and the algorithm is stopped when the cost ‖y − Φx‖2

increases (solid).

when ‖Φ‖2 = 1 and the solid line shows the results when

Φ had unit norm columns. When using the second type of

normalisation, we stopped the algorithm whenever the cost

function in problem (2) increased to prevent instability. For

comparison, we also show the results obtained by an ℓ1
minimisation, that is, minx ‖x‖1 : y = Φx, which is scaling

independent.

From these results it is clear that the performance of

IHTK varies significantly if different scalings of Φ are used.

Furthermore, for both scalings used here, the ℓ1 minimisation

results are significantly better. Note also that in this example,

the theoretical condition on δ3K that guarantees that both

algorithms can recover the exact support breaks down for

signals with as few as 4 non-zero elements so that the ℓ1 based

method performs far beyond the region in which the theory

holds. We therefore now derive a normalisation of the IHTK

algorithm that not only makes the algorithms performance

independent from arbitrary scaling of Φ, but will also make

the algorithms empirical performance similar to that of the ℓ1
method.

III. NORMALISED ITERATIVE HARD THRESHOLDING

In this section we propose a simple modification of the

algorithm1 that guarantees convergence to a local minimum of

the cost function, whatever the operator norm of Φ, whilst still

retaining its performance guarantees if a restricted isometry

property holds.

A closer look at the convergence proof in [14] reveals that

the important step (and crucially, the step that relies on the

singular values of Φ to be strictly smaller than one) is that we

need to guarantee that ‖y−Φxn+1‖22 < (1− c)‖y−Φxn‖22
in each iteration, for some 0 < c < 1.

To motivate the following development, we recall the deriva-

tion of the Iterative Hard Thresholding algorithm in [14]. In

order to optimise the cost function ‖y − Φx̂‖22, under the

constraint that ‖x̂‖0 ≤ K , we use a majorisation minimisation

1This modification has now been incorporated into the latest version of
the algorithm in the sparsify matlab toolbox, which can be found on the first
authors web-page. The algorithm is accessible through the call to the function
hard l0 Mterm.

approach. The function ‖y−Φx̂‖22 is majorised by

‖(y −Φx̂)‖22 + ‖x̂− xn‖22 − ‖Φ(x̂− xn)‖22, (10)

whenever ‖Φ‖2 < 1, that is, the minimiser xn+1 of (10) under

the constraint that x is K-sparse satisfies ‖y − Φxn+1‖22 ≤
‖y−Φxn‖22. To overcome the restriction on ‖Φ‖2, we use the

following standard modification to the majorising function.

‖µ0.5(y −Φx̂)‖22 + ‖x̂− xn‖22 − ‖µ0.5Φ(x̂− xn)‖22. (11)

For this to majorise ‖y −Φx̂‖22 certain conditions on Φ and

µ must be satisfied, but, importantly, re-scaling of Φ can be

counteracted by an inverse scaling of µ.

The above cost function is easy to minimise. Using argu-

ments from [14], it can be seen that

xn+1 = HK(xn + µΦT (y −Φxn)), (12)

calculates the minimum of this cost function under the con-

straint that xn+1 has to have no more than K non-zero

elements.

The original algorithm is a special case of this method where

µ = 1. Instead of constraining ‖Φ‖2 to guarantee convergence

of the algorithm, we now suggest the following approach to

determine µ adaptively, so that the algorithm becomes scale

independent.

Let Γn be the support set of xn and let g = ΦT (y−Φxn)
be the negative gradient of ‖y−Φx‖22 evaluated at the current

estimate xn. Should xn be zero, which typically only happens

in the first iteration when we initialise the algorithm with

the zero vector, we use the index set of the largest K (in

magnitude) elements of ΦT y as the set Γn. Assume that we

had identified the correct support, that is, Γn is the support

of the best K term approximation to y. In this case we

would want to minimise ‖y − ΦΓnxΓn‖22. Using a gradient

descent algorithm, this would be done using the iteration

xn+1
Γn = xn

Γn + µΦT
Γn(y −ΦΓnxn

Γn). Importantly, in the case

in which the support is fixed, we can calculate an optimal step

size, that is, a step size that maximally reduces the error in

each iteration. It is easy to see that this step size is [18]

µ =
gT

ΓngΓn

gT
ΓnΦT

ΓnΦΓngΓn

, (13)

where gΓn is the sub-vector of g obtained by discarding all

but the elements in Γn and where ΦΓn is defined similarly by

discarding columns of Φ. Evaluation of this quantity requires

the calculation of ΦΓngΓn , the cost of which is equivalent to

the evaluation of Φxn and ΦT (y−Φxn), so that the cost of

the algorithm only increases by a constant fraction.

We here propose to use this step size also in the Iterative

Hard Thresholding algorithm. In particular, in each iteration,

we calculate µ as above and calculate a new proposition x̃n+1

using (12). In the case in which the support of x̃n+1 is the

same as that of xn, we are then guaranteed to have a maximal

reduction in the cost function and we use xn+1 = x̃n+1.

However, if the support of xn+1 differs from the support

of xn, the optimality of µ is no longer guaranteed. In this

case, a sufficient condition that guarantees convergence is (see

VERSION: FEBRUARY 19, 2009 4

appendix A) that µ ≤ ω, where

ω = (1− c) ‖x̃
n+1 − xn‖22

‖Φ(x̃n+1 − xn)‖22
(14)

for a small fixed constant c.
Hence, if our first proposal x̃n+1 has a different support

from the current estimate, we calculate ω and check whether

µ < ω. If this holds, we keep the new update and set xn+1 =
x̃n+1. Otherwise we need to shrink the step size µ. We here

propose the update µ← µ/(κ(1−c)), for some κ > 1/(1−c).
With this smaller step size, a new proposal x̃n+1 is calculated

using (12). This procedure is terminated when µ < ω, in which

case we accept the latest proposal and continue with the next

iteration.

The algorithm is summarised as follows

· Initialise x1 = 0, Γ1 =supp(HK(ΦT y)),
· Iterate for n = 1, i+ +, until stopping criterion is met

· gn = ΦT (y −Φxn)

· µn =
gT

ΓngΓn

gT

ΓnΦT

ΓnΦΓngΓn

· x̃n+1 = HK(xn + µngn).
· Γn+1 =supp(x̃n+1)
· if Γn+1 = Γn,

· xn+1 = x̃n+1,

· else if Γn+1 6= Γn,

· if µn ≤ (1− c) ‖x̃n+1−xn‖2
2

‖Φ(x̃n+1−xn)‖2
2

· xn+1 = x̃n+1,

· else if µn > (1− c) ‖x̃n+1−xn‖2
2

‖Φ(x̃n+1−xn)‖2
2

,

· iterate until µn ≤ (1− c) ‖x̃n+1−xn‖2
2

‖Φ(x̃n+1−xn)‖2
2

,

· µn ← µn/(κ(1− c))
· x̃n+1 = HK(xn + µngn).

· Γn+1 =supp(x̃n+1)
· xn+1 = x̃n+1],

A. Bounds on µ

An important question is whether the above algorithm is

guaranteed to find a µn ≤ ω. This will follow from a bound

on µ which only depends on the following property of Φ. Let

Φ be such that 0 < α2K ≤ ‖Φx‖2/‖x‖2 ≤ β2K holds for

all vectors x with no more than 2K non-zero elements and

let α2K and β2K be the best possible constants in the above

inequality. As gΓn has only K non-zero elements, we then

have the trivial bound that

1

β2
2K

≤ 1

β2
K

≤ gT
ΓngΓn

gT
ΓnΦT

ΓnΦΓngΓn

≤ 1

α2
K

≤ 1

α2
2K

, (15)

which gives an upper bound on µn. In appendix B we derive

a lower bound so that

1

κβ2
2K

≤ µn ≤ 1

α2
2K

(16)

This implies that the algorithm is guaranteed to select a µn in

no more than ⌊logκ(1−c)
κβ2K

α2K
⌋ iterations.

Note that there is a trade-off in the choice of κ. When taking

smaller steps, we might have to take more steps in the line

search, the theoretical results below will then however have

somewhat better constants as the lower bound on µn will get

closer to 1
β2
2K

.

B. Theoretic properties of normalised IHTK

The reason behind the condition that we require µ < ω
is that it guarantees that the cost ‖y − Φx‖2 decreases

from iteration to iteration and, what is more, as shown in

appendix A that it guarantees the convergence of the algorithm.

Importantly, this holds irrespective of the value of the restricted

isometry constant and the scaling of Φ. In particular, we prove

the following theorem for our normalised algorithm.

Theorem 3. If rank(Φ) = M and rank(ΦΓ) = K for all

Γ such that |Γ| = K , then the normalised Iterative Hard

Thresholding algorithm converges to a local minimum of the

optimisation problem (2).

This convergence result guarantees stability of the algorithm

for arbitrary scaling of Φ.

Importantly, we can also derive a result similar to The-

orem 2 for the normalised algorithm, guaranteeing recovery

performance in certain cases in which the restricted isometry

property holds. As in [19], we here state this results in terms of

a quantity γ that is related to the restricted isometry property,

but is scale invariant.

Theorem 4. Assume Φ satisfies the non-symmetric restricted

isometry property

α2K ≤
‖Φx‖2
‖x‖2

≤ β2K (17)

for all x : ‖x‖0 ≤ 2K . Given a noisy observation y = Φx+e,

where x is an arbitrary vector, let xK be the best K-term

approximation to x.

If the normalised Iterative Hard Thresholding algorithm has

used µ =
‖gΓn‖2

2

‖ΦΓngΓn‖2
2

in each iteration, then let γ2K =
β2
2K

α2
2K

−1

else let γ2K = max{1− α2
2K

κβ2
2K

,
β2
2K

α2
2K

− 1}.
If γ2K < 1/8, then, at iteration n, the approximation xn

satisfies

‖x− xn‖2 ≤ 2−n‖xK‖2 + 8ǫ̃K , (18)

where

ǫ̃K = ‖x− xK‖2 +
‖x− xK‖1√

K
+

1

β2K

‖e‖2. (19)

Furthermore, after at most n⋆ =
⌈

log2

(

‖xK‖2/ǫ̃K
)⌉

itera-

tions, IHTK estimates x with accuracy given by

‖x− xn⋆‖2 ≤ 9ǫ̃K . (20)

More generally, if γ2K < 1/4, then there exists a finite

constant c, such that

‖x− xn⋆‖2 ≤ cǫ̃K , (21)

with c→∞ as γ2K → 1/4.

The proof can be found in appendix C.

This theorem is basically identical to Theorem 2, with the

only difference being that we use the scale invariant quantity

γ2K . The only part in the theorem that depends on the scaling

of Φ is the amplification of observation noise, which makes

intuitively sense, because re-scaling Φ means that we re-scale

Φx so that the signal to noise ration ‖Φx‖2/‖e‖2 increases

or decreases accordingly.

VERSION: FEBRUARY 19, 2009 5

C. Monitoring the Algorithm

Letting bn =
‖Φ(xn+1−xn)‖2

2

‖xn+1−xn‖2
2

, it is clear form the definition

of the non-symmetric restricted isometry property that

α2
2K ≤ bn ≤ β2

2K , (22)

so that we can bound γ2K using

γ2K ≥ max
n,k

bn/bk − 1. (23)

This offers a simple bound that can be used to monitor the

algorithm. Because Φxn has to be evaluated by the algorithm

in each iteration, calculation of the bound can be done with

negligible computational cost.

D. Discussion on step-size choice

We have above suggested a quite simple strategy to shrink

µn to guarantee that µn ≤ ω. An alternative approach would

be the following. If the support of x̃n+1 differs from the

support of xn and if µn > ω, we could set µn = ω. This

strategy has the following theoretical advantage. It is easily

seen that this choice guarantees that

µn ≥ 1− c
β2K

, (24)

which in turn implies that Theorem 4 holds with κ = 1/(1−c),
which would be the best choice possible and which obviously

can’t be achieved using µn ← µn/(κ(1 − c)). On the other

hand, setting µn = ω does not guarantee that the algorithm

will find a µn ≤ ω in a finite number of steps. A hybrid

strategy might therefore be beneficial. However, we will not

discuss such alternative strategy in any more detail and will

use µn ← µn/2 in the experiments below.

IV. SIMULATIONS

We are here particularly interested in the performance of

the algorithm in a regime not covered by the theory. To

this end, we conducted several empirical studies. We first

evaluate the approach on randomly generated artificial data

before studying the performance on a larger problem from the

Magnetic Resonance Imaging literature. The data in the next

two subsections was generated as in subsection II-D unless

stated otherwise.

A. Comparison to un-modified algorithm

We have demonstrated above that the original Iterative

Hard Thresholding algorithm is sensitive to scaling of Φ.

The new algorithm is now insensitive to such scaling and is

guaranteed to be stable. We first compare the performance of

the normalised algorithm to that of the original method. To do

this, we repeated the experiment of subsection II-D using the

normalised algorithm. The results are shown in figure 2 where

we show the percentage of cases in which the algorithms could

recover the true support of a K sparse vector. Here, the solid

line is the performance of our normalised algorithm, whilst the

other two lines are the results of the original algorithm with

‖Φ‖2 = 1 (dotted) and normalised columns (dash-dotted).

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

sparsity K/M

pr
ob

ab
ili

ty
 o

f
ex

ac
t r

ec
ov

er
ty

Fig. 2. Exact recovery performance. Comparison between the normalised IHT
algorithm (solid), the un-modified algorithm where ‖Φ‖2 = 1 (dotted) and
the un-modified algorithm where Φ has unit norm columns and the algorithm
is stopped when the cost ‖y − Φx‖2 increases (dash-dotted).

B. Comparison to other state of the art methods

We here compare the empirical average performance of the

normalised algorithm to the performance of two other state

of the art approaches, namely CoSaMP [8] and an ℓ1 base

approach that minimises ‖x‖1 such that y = Φx. CoSaMP

was stopped either when the estimate did not change signifi-

cantly between iterations, or whenever the approximation error

increased between iterations. This was required as CoSaMP is

also not guaranteed to terminate if the restricted isometry prop-

erty does not hold. We here used both an implementation of

CoSaMP that used an exact least squares solution [8] (shown

with dash dotted lines) and an implementation of CoSaMP in

which we replace the exact least squares solution with several

steps of gradient optimisation as proposed in [8] (dotted lines,

from left to right, using 3, 6 and 9 conjugate gradient iterations

within each CoSaMP iteration). It is important to note that both

versions of the CoSaAMP algorithm have the same theoretical

guarantees as our Iterative Hard Thresholding algorithm [8].

The results are compared in figure 3, where we also show

the number of cases for each K for which we did not detect

an RIP violation using the bound in subsection III-C (dotted

o) and the cases in which the algorithm used µ =
‖gΓ‖

2
2

‖ΦΓgΓ‖2
2

in

all iteration (dotted +) .

Importantly, the algorithm performed well in this average

case analysis far beyond the region where these two conditions

are violated. In this example the normalised Iterative Hard

Thresholding algorithm performed better than CoSaMP (with

exact least squares) and nearly as well as the ℓ1 based

approach. Also of interest is the observation that the efficient

implementation of CoSaMP based on conjugate gradient up-

dates performs significantly worse than the implementation

based on the much slower exact least squares solution.

It is well known that many, though not all, algorithms

for sparse signal recovery perform differently for different

distributions of the non-zero coefficients. For example, many

algorithms perform worse, if the non-zero coefficients are

all of equal magnitude. We therefore repeated the above

VERSION: FEBRUARY 19, 2009 6

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

sparsity K/M

pr
ob

ab
ili

ty
 o

f
ex

ac
t r

ec
ov

er
ty

Fig. 3. Exact recovery performance where non-zero coefficients are Gaussian
distributed. Comparison between normalised IHT (solid), ℓ1 solution (dashed),
CoSaMP using the pseudo inverse (dash-dotted) and CoSaMP using (from left
to right) 3, 6 or 9 conjugate gradient iterations (dotted). Also shown are the
average cases in which the bound in subsection III-C did not violate the
requirement in the algorithm (dotted o) and the cases in which the algorithm

used µn+1 =
‖gΓ‖2

2

‖ΦΓgΓ‖2
2

in all iterations (dotted +).

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

sparsity K/M

pr
ob

ab
ili

ty
 o

f
ex

ac
t r

ec
ov

er
ty

Fig. 4. Exact recovery performance where non-zero coefficients are 1.
Comparison between normalised IHT (solid), ℓ1 solution (dashed), CoSaMP
using the pseudo inverse (dash-dotted) and CoSaMP using (from left to
right) 3, 6 or 9 conjugate gradient iterations (dotted). Also shown are the
average cases in which the bound in subsection III-C did not violate the
requirement in the algorithm (dotted o) and the cases in which the algorithm

used µn+1 =
‖gΓ‖2

2

‖ΦΓgΓ‖2
2

in all iterations (dotted +).

experiment with the modification that we set the non-zero

coefficients to 1. The recovery performance in this regime is

shown in figure 4.

It is interesting to note the striking difference in the

performance of CoSaMP when a few steps of a conjugate

gradient solver were used. In this case, the performance of

the algorithm for Gaussian coefficients was markedly worse

than that observed for equal magnitude coefficients. This is in

contrast to the performance of the normalised Iterative Hard

Thresholding algorithm, which performed somewhat worse in

the case of equal magnitude coefficients.

Figure 5 shows the difference in computation time for the

first experiment in the region where the algorithms perform

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

sparsity K/M

co
m

pu
ta

tio
n

tim
e

Fig. 5. Comparison between computation time for normalised IHT (solid),
ℓ1 solution (dashed), CoSaMP using the pseudo inverse (dash-dotted) and
CoSaMP using (from top to bottom) 9, 6 or 3 conjugate gradient iterations
(dotted).

well. It is important to realise that one of the implementations

of CoSaMP (shown with dash dotted lines) requires the

solution to an inverse problem in each iteration, which is costly

in general. Normalised IHT on the other hand only requires

the application of Φ and ΦT . In many practical situations,

these matrices are designed to have fast implementations,

based, for example, on the Fourier or wavelet transform. In

this case, the computational benefit of the normalised IHT

algorithm will be even greater and more dramatic than shown

here for random matrices Φ. As noted above, if CoSaMP is

implemented using conjugate gradient updates as proposed in

[8], even though the algorithms complexity decreases signifi-

cantly, so does its performance. To solve the ℓ1 optimisation

problem, we here used the spgl1 [20] algorithm (available on

(http://www.cs.ubc.ca/labs/scl/spgl1/).

C. Influence of noise

In the real world, signals are rarely exactly K-sparse.

Furthermore, observations often have substantial noise contri-

butions. The influence of these two effects on the performance

of the algorithms compared in the previous subsection is

studied here.

In the first experiment, we assumed that the observation

was y = Φx+ e, where x was K-sparse and where the noise

term e was Gaussian. We normalised Φx and e such that we

had a specific signal to noise ratio (SNR). The performance

for SNR values of 0dB, 10dB, 20dB and 30dB is shown in

figure 6. We used the pseudo-inverse based implementation of

CoSaMP. The ℓ1 method used here solved minx̂ ‖x̂‖1 under

the constraint that ‖y − Φx̂‖2 ≤ ‖e‖2, where we assumed

knowledge of ‖e‖2. Also shown is the performance of an

oracle estimator that knows the location of the K largest

coefficients in x and uses a least squares estimate for these

coefficients (setting the remaining coefficients to zero).

The results show that for moderate SNR values, such as

30dB, the proposed algorithm is close to the optimal perfor-

mance of the oracle and outperforms the other approaches,

VERSION: FEBRUARY 19, 2009 7

0 0.1 0.2 0.3 0.4 0.5
-10

0

10

20
0 dB SNR

es
tim

at
io

n
SN

R
 in

 d
B

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30
10 dB SNR

es
tim

at
io

n
SN

R
 in

 d
B

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40
20 dB SNR

es
tim

at
io

n
SN

R
 in

 d
B

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50
30 dB SNR

sparsity K/M

es
tim

at
io

n
SN

R
 in

 d
B

Fig. 6. Influence of observation noise. The observation was y = Φx + e,
where x was K sparse. We compare normalised IHT (solid), ℓ1 solution
(dashed) and CoSaMP (dash-dotted). Also shown is an oracle estimate that
knows the location of the non-zero coefficients (dotted).

at least up to a sparsity of approximately 0.25. Interestingly,

the ℓ1 solution, which we did not de-bias2, performed quite

well for very low SNR values. Interesting here is that the ℓ1
solution even outperformed the oracle estimate in the 0dB
setting when K/M was between 0.45 and 5. This is possibly

due to the particular oracle estimate used. CoSaMP performed

somewhat worse. Interestingly, once the signal became less

sparse, CoSaMP did perform markedly worse than the other

approaches, which is probably due to the fact that we had to

stop the algorithm whenever the approximation error increased

to prevent instability.

In the next experiment, we studied the influence of ’noise’ in

2That is, we did not calculate a least squares estimate, using the coefficients
identified by the algorithm.

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

x
n
 = n-1

es
tim

at
io

n
SN

R
 in

 d
B

0 0.1 0.2 0.3 0.4 0.5
10

20

30

40

50

60

x
n
 = n-2

es
tim

at
io

n
SN

R
 in

 d
B

0 0.1 0.2 0.3 0.4 0.5

40

60

80

100

120

140

x
n
 = n-4

sparsity K/M

es
tim

at
io

n
SN

R
 in

 d
B

Fig. 7. Compressible signals. Here y = Φx, where x was generated using
x[n] = n−p, for p ∈ {1, 2, 4}. We compare normalised IHT (solid), ℓ1
solution (dashed) and CoSaMP (dash-dotted). Also shown is an oracle estimate
that knows the location of the largest K non-zero coefficients (dotted).

the signal domain, that is, x was not exact sparse anymore. We

generated observations y = Φx, where x was compressible,

that is, the coefficients in x decayed exponentially. In partic-

ular, we generated x[n] = n−p, where p ∈ {1, 2, 4}. In this

experiment, we varied the sparsity of the solution for CoSaMP

(which again used the pseudo-inverse) and normalised IHT.

The ℓ1 method used here solved minx̂ ‖x̂‖1 under the con-

straint that ‖y − Φx̂‖2 < ‖Φ(xK − x)‖2, where x is the

vector used to generate the observation and xK is the best

K-term approximation to x.

It is interesting to observe that the pseudo-inverse based

CoSaMP remains close to the optimal performance for spar-

sities above those for which normalised IHT fails, however,

once CoSaMP fails, the performance decreases rapidly with

decreasing sparsity. Again, this is likely to be due to the fact

that we had to stop CoSaMP whenever the approximation error

increased to prevent instability.

VERSION: FEBRUARY 19, 2009 8

Original / Reconstruction Haar Wavelet Transform

Frequency Domain Observation

Fig. 8. Magnetic Resonance Imaging example using the Shepp-Logan
Phantom. Original and reconstructed Phantom (top left), Haar wavelet rep-
resentation (top right), Fourier domain representation (bottom left) and radial
slices through the Fourier domain (bottom right).

D. Application to large scale problem

The next example demonstrates the applicability of the

normalised algorithm to a somewhat larger problem. We

take this example from the application domain of magnetic

resonance imaging (MRI). In MRI, the scanner takes slices

from the two dimensional Fourier domain of the image [21].

In order to reduce scan time and the exposure of the patient

to electromagnetic radiation, it is desirable to take fewer

measurements. In this case, we can exploit the sparsity of

the image in the wavelet domain and use compressed sensing

methods to recover the image. In our notation, the observation

vector y contains the measurements and the matrix Φ models

the inverse wavelet transform, the Fourier transform and the

sub-sampling operator.

This is shown in figure 8, where the top right picture shows

the wavelet transform of the image shown on the top left. This

image is the standard Shepp-Logan phantom. The lower left

picture shows the Fourier representation of the image and the

lower right picture shows the measurements which here are

radial slices through the Fourier domain.

We take between 30 and 52 radial slices from the Fourier

domain and reconstruct the image from these measurements

assuming sparsity in the Haar wavelet domain. The results are

shown in figure 9, where we also show the results obtained

with a range of other algorithms as reported previously in

[22]. In particular, we show the results for the (approximate

conjugate) Gradient Pursuit algorithm (GP) [22], the results

obtained using Orthogonal Matching Pursuit (OMP) and an

ℓ1 based approach minimising ‖y − Φx‖22 + λ‖x‖1, where

λ was chosen experimentally so that the algorithm recovered

approximately 4000 non-zero elements, which was the number

of non-zero elements found in the wavelet representation of the

original image. See [22] for more details on this experiment.

It can be seen that the Iterative Hard Thresholding algorithm

0.1 0.12 0.14 0.16 0.18 0.2
20

40

60

80

100

120

140

ratio of measurments to signal dimension

PS
N

R
 in

 d
B

IHT

OMP

GP

L1

Fig. 9. Performance in recovering the Shepp-Logan phantom using radial line
measurements. Ratio of measurements to signal dimension (x-axis) vs. peak
signal to noise ratio (y-axis) (thresholded at 130 dB PSNR). Results are shown
for normalised IHT, Orthogonal Matching Pursuit (OMP), ’Approximate’
Conjugate Gradient Pursuit (GP) and ℓ1 optimisation (L1).

performs as well as or better than the other approaches. It is

also worth pointing out that we tried to run CoSaMP on this

example. Due to the size of the problem, we had to use the

implementation based on partial conjugate gradient solutions.

However, we found that, if we stopped CoSaMP when the cost

function increased, the results were very poor, whilst if we did

not stop the algorithm whenever the cost function increased,

the algorithm did not converge.

V. CONCLUSIONS

The numerical studies of the Iterative Hard Thresholding

algorithm reported in [14] were not very promising. This is

due to the fact that in [14], the matrix Φ was normalised

such that it’s largest singular value was below 1 to guarantee

stability. The theoretical analysis of the algorithm in [13] and

[10] suggests that it is desirable that the algorithm satisfies the

RIP condition, such that the singular values of all 3K element

sub-matrices are centred around 1. A similar observation has

been made here numerically. The problem however is that we

then need to guarantee the stability of the algorithm. This can

be done by the introduction of a simple adaptive step size

and line search. With this modification, the algorithm is no

longer dependent on the scaling of Φ and its convergence is

guaranteed. Furthermore, a recovery result can also be derived

that guarantees that the result is near optimal if Φ satisfies a

scale independent restricted isometry property.

The normalised Iterative Hard Thresholding algorithm

therefore offers a compromise that allows strong theoretical

guarantees whenever Φ satisfies a restricted isometry property

with a small constant γ2K . In the regime where this property

fails, the algorithm is guaranteed to converge to a local

minimum of the cost function (2) and empirically shows good

average performance.

APPENDIX A

PROOF OF THEOREM 3

We start by proving the following lemma.

VERSION: FEBRUARY 19, 2009 9

Lemma 5. Assume there is a sub-sequence of iterations nk for

which the support of the estimate changes from one iteration

to the next. Further assume that there exist a µnk+1 bounded

from above and a constant 0 < c < 1 such that the iteration

xnk+1 = HK(xn
k + µnk+1Φ(y −Φxnk)), (25)

satisfies

µnk+1 ≤ (1 − c) ‖x
nk+1 − xnk‖22

‖Φ(xnk+1 − xnk)‖22
, (26)

then, for each ǫ > 0, there exist an integer N , such that for

all nk > N

‖xnk+1 − xnk‖2 ≤ ǫ. (27)

Proof: Using the same argument as in [14], it is easy to

show that the condition on µn guarantees that

‖y −Φxnk+1‖2 < ‖y −Φxnk‖2 (28)

and that

‖xnk+1 − xnk‖22 − µn+1‖Φ(xnk+1 − xnk)‖22
≤ µnk+1‖y −Φxnk‖22 − µnk+1‖y−Φxnk+1‖22. (29)

Now consider the sequence SN =
∑N

k=0 ‖xnk+1 − xnk‖22,

which is clearly increasing. Therefore, it converges if it

is bounded, which will follow from the inequality (1 −
c)‖xnk+1−xnk‖22 ≥ µnk+1‖Φ(xnk+1−xnk)‖22. In particular,

we have

N
∑

k=0

‖xnk+1 − xnk‖22

≤ 1

c

N
∑

k=0

[

‖xnk+1 − xnk‖22 − µnk+1‖Φ(xnk+1 − xnk)‖22
]

≤ 1

c

N
∑

k=0

[

µnk+1‖y−Φxnk‖22 − µnk+1‖y −Φxnk+1‖22
]

≤ 1

c2

N
∑

k=0

[

‖y−Φxnk‖22 − ‖y −Φxnk+1‖22
]

≤ 1

c2
‖y−Φxn0‖22 − ‖y−ΦxN‖22

≤ 1

c2
‖y‖22.

The second inequality is (29) and the third inequality uses the

fact that µnk+1 is bounded from above. The fourth inequality

uses the fact that ‖y−Φxnk+1‖2 ≤ ‖y−Φxn(k+1)‖2, so that

we can cancel all but two terms in the summation.

Lemma 5 can now be used to prove convergence of the

algorithm using the same argument as in [14].

There are two possibilities, either the support of xn is the

same for all n > N , for some N , or there exist infinitely many

nk such that xnk+1 and xnk have different support.

In the second case, we apply the following argument. By

lemma 5, we can choose any ǫ > 0 and large enough N
such that for infinitely many nk > N, ‖xnk+1 − xnk‖2 ≤ ǫ
where xnk+1 and xnk have different support. Looking at each

element in these two vectors, we must have |xnk+1
i −xnk

i | ≤ ǫ,

that is, the elements in xnk change by an arbitrarily small

amount.

We now distinguish two cases.

· Case 1: At least one zero element is set to a non-zero

element. For this element, say xj , because xnk

j = 0 and

xnk+1
j 6= 0 the requirement that |xnk+1

i −xnk

i | ≤ ǫ implies

that |xnk+1
j | ≤ ǫ. By the definition of the operator HK

used in the algorithm, this implies that all elements that

are set to zero must satisfy

|xnk

i + µφT
i (y −Φxnk)| ≤ ǫ. (30)

Furthermore, these elements must also satisfy

|xnk+1
i − xnk

i | = |xnk

i | ≤ ǫ. (31)

This implies that for all elements that satisfy |xnk+1
i | = 0,

we have

|µφT
i (y−Φxnk)| ≤ |xnk

i |+|xnk

i +µφT
i (y−Φxnk)| ≤ 2ǫ.

(32)

Similarly, for all elements that are non-zero in xnk+1 we

have |xnk+1
i − xnk

i | = |µφT
i (y −Φxnk)| ≤ ǫ. Hence, in

the case in which at least one zero element is set to a

non-zero element, we are guaranteed that for all i,

|φT
i (y −Φxnk)| ≤ 2ǫ/µ (33)

· Case 2: A non-zero element is set to 0 whilst no zero

element is set to a non-zero element.

This can only happen if the size of the support set

decreases. By the definition of the operator HK used in

the algorithm, this implies that xnk

i +µφT
i (y−Φxnk) = 0

for all i ∈ Γ0, where Γ0 is the set of zero elements in

xnk . Therefore, for i ∈ Γ0, we have

|xnk+1
i − xnk

i | = |µφT
i (y −Φxnk)| = 0. (34)

In addition, for those i for which xnk+1
i = 0 and xnk

i 6= 0,

we have

xnk

i = −µφT
i (y −Φxnk) (35)

and

|µφT
i (y −Φxnk)| = |xnk

i | = |xnk+1
i − xnk

i | ≤ ǫ. (36)

Finally, for those i for which both xnk+1
i 6= 0 and xnk

i 6=
0, we have

|xnk+1
i − xnk

i | = |µφT
i (y −Φxnk)| ≤ ǫ. (37)

Therefore, we must have

|φT
i (y −Φxnk)| ≤ ǫ/µ (38)

We have thus shown that for all ǫ > 0 there is an N such

that for infinitely many nk > N for which xnk+1 and xnk

have different support

|φT
i (y −Φxnk)| ≤ 2ǫ/µ

holds for all i.
Now, in appendix B we show that µ is bounded from below

by a constant. Therefore, for these infinitely many nk, letting

ǫ → 0, we have ‖ΦT (y − Φxnk)‖2 → 0. As we assume

that Φ is full rank, we have some σ > 0 such that σ‖(y −

VERSION: FEBRUARY 19, 2009 10

Φxnk)‖2 ≤ ‖ΦT (y − Φxnk)‖2 → 0 which implies that the

sequence {‖y −Φxnk‖2}k converges to zero.

We have therefore shown that {‖y −Φxn‖2}n has a sub-

sequence that converges to 0. Now ‖y−Φxn‖2 is decreasing

and bounded, hence it also converges and as every sub-

sequence of a convergent sequence converges to the same

limit, it also converges to zero, that is, {‖y−Φxn‖2}n → 0.

Note that this is only possible if xn (which is a K-sparse

vector) converges to a K sparse vector x for which Φx = y.

Hence, if the support changes infinitely often, then the algo-

rithm converges to a K-sparse vector for which Φx = y. This

is clearly a global minimum of the cost-function ‖y −Φx‖2
which satisfies the constraint that x is K-sparse.

It therefore remains to analyse what happens if the support

of xn remains fixed for n > N for some N . In this case

our algorithm reduces to a simple gradient descend algorithm

that minimises y −ΦΓxΓ, where Γ is the support set which

remains fixed after some iteration. We further assume that ΦΓ

is of rank K . In this case, convergence is well known. See for

example page 521 in the third edition of [18], which shows the

linear convergence of the algorithm to x⋆ = (ΦT
ΓΦΓ)−1ΦT

Γy.

It remains to show that x⋆ is a local minimum of the cost

function ‖y−Φx‖2 under the constraint that x has to be K-

sparse. This has already be established in [14] where we have

shown that

Lemma 6. A fixed point x⋆ is a local minimum of the cost

function ‖y−Φx‖2 under the constraint that x is K-sparse.

APPENDIX B

A LOWER BOUNDS ON µ

We know that ω ≥ 1−c
β2
2K

so that any element µ ∈
(1−c

β2
2K

, 1−c
κ(1−c)β2

2K

] will satisfy µ ≤ ω. If the algorithm selects

µn =
gT

ΓngΓn

gT

ΓnΦT

ΓnΦΓngΓn
, then µn ≥ 1

β2
2K

. Otherwise, the

algorithm will select a µn ≥ 1
κβ2

2K

.

APPENDIX C

SIGNAL RECOVERY PERFORMANCE

Assume Φ satisfies the restricted isometry property

0 < αK ≤
‖Φx‖2
‖x‖2

≤ βK (39)

for all x : ‖x‖0 ≤ K .

If the normalised Iterative Hard Thresholding algorithm has

used µ =
‖gΓn‖2

2

‖ΦΓngΓn‖2
2

in each iteration, then 1
β2
2K

≤ µn ≤ 1
α2

2K

,

else we have from appendix B that 1
κβ2

2K

≤ µn ≤ 1
α2

2K

. Using

these bounds on µn together with the arguments in [8] the

following lemma can be derived

Lemma 7. If Φ satisfies the restricted isometry with constants

α2K and β2K and let γ2K be as in the theorem, then for

|Γ| ≤ 2K
‖ΦT

Γy‖2 ≤ β2K‖x‖2, (40)

‖µnΦT
ΓΦΓxΓ‖2 ≤ (γ2K + 1)‖xΓ‖2 (41)

and

‖
(

I− µnΦT
ΓΦΓ

)

xΓ‖2 ≤ γ2K‖xΓ‖2. (42)

Also, for two disjoint sets Γ and Λ (i.e. Γ
⋂

Λ = ∅) with

|Γ ⋃

Λ| ≤ 2K

‖µnΦT
ΓΦΛxΛ‖2 ≤ γ2K‖xΛ‖2. (43)

We also use a result similar to Proposition 3.5 in [8]

Lemma 8. For any x, let xK be the best K-term approxima-

tion to x. Let Γ be any K element subset. If the RIP holds for

sparsity K , then

‖µnΦT
ΓΦ(x−xK)‖2 ≤ (γ2K+1)

[

‖x− xK‖2 +
‖x− xK‖1√

K

]

(44)

Proof: Let T0 be the set of the K largest (in magnitude)

elements in x, let T1 be the set of the next K largest elements

and so on and let Γ be any K element subset. We have [23]

‖µnΦT
ΓΦ(x− xK)‖2 ≤

L
∑

i=1

‖µnΦT
ΓΦTi

xTi
‖2

≤ (γ2K + 1)

L
∑

i=1

‖xTi
‖2

≤ (γ2K + 1)

[

‖xT1‖2 +

L
∑

i=2

√
K‖xTi

‖∞
]

≤ (γ2K + 1)

[

‖xT1‖2 +
1√
K

L
∑

i=2

‖xTi−1‖1
]

≤ (γ2K + 1)

[

‖xT1‖2 +

∑L

i=1 ‖xTi
‖1√

K

]

. (45)

We use the following notation.

1) y = Φx + e = ΦxK + Φ(x− xK) + e = ΦxK + ẽ

2) Γn = supp{xn},
3) B12 = supp{xn+1 − xK},
4) B3 = supp{xn − xK} \B12 (note that |B3| ≤ K),

5) rn = xK − xn,

6) g = ΦT (y −Φxn),
7) an+1 = xn + µng,

Using the triangle inequality, we first bound

‖x− xn‖2 ≤ ‖xK − xn‖2 + ‖x− xK‖2 (46)

and then bound

‖xK − xn+1‖2 ≤ ‖xK
B12
− an+1

B12
‖2 + ‖xn+1

B12
− an+1

B12
‖2.

We know that xn+1 is a better K-term approximation to an+1
B12

than xK so that

‖xK − xn+1‖2 ≤ 2‖xK
B12
− an+1

B12
‖2. (47)

Expanding an+1 we have

‖xK − xn+1‖2
≤ 2‖xK

B12
− xn

B12
− µnΦT

B12
Φrn − µnΦT

B12
ẽ‖2

≤ 2‖rn
B12
− µnΦT

B12
Φrn‖2 + 2‖µnΦT

B12
ẽ‖2

≤ 2‖(I− µnΦT
B12

ΦB12)r
n
B12
‖2

+ 2‖(µnΦT
B12

ΦB3)r
n
B3
‖2

+ 2‖µnΦT
B12

Φ(x− xK)‖2 + 2‖µnΦT
B12

e‖2

VERSION: FEBRUARY 19, 2009 11

Splitting the set B12 into two disjoint sets B1 and B2 with

no more than K elements each, we have by orthogonality and

lemmata 7 and 8

‖µnΦT
B12

ΦB3r
n
B3
‖2

=
√

‖µnΦT
B1

ΦB3r
n
B3
‖22 + ‖µnΦT

B2
ΦB3r

n
B3
‖22

≤
√

2γ2K‖rn
B3
‖2

and

‖µnΦT
B12

Φ(x− xK)‖2
=

√

‖µnΦT
B1

Φ(x− xK)‖22 + ‖µnΦT
B2

Φ(x − xK)‖22.

≤
√

2(γ2K + 1)

[

‖xT1‖2 +

∑L

i=1 ‖xTi
‖1√

K

]

We now use the bounds in Lemma 7

‖rn+1‖2 ≤ 2
√

2γ2K(‖rn
B12
‖2 + ‖rn

B3
‖2)

+ 2
β2K

α2
2K

‖e‖2

+ 2
√

2(γ2K + 1)

[

‖x− xK‖2 +
‖x− xK‖1√

K

]

We also know that rn
B12

and rn
B3

are orthogonal so that

‖rn+1‖2 ≤ 4γ2K‖rn‖2 + 2
β2K

α2
2K

‖e‖2

+ 2
√

2(γ2K + 1)

[

‖x− xK‖2 +
‖x− xK‖1√

K

]

.

The theorem follows by using γ2K < 1
8

‖rn‖2 < 0.5‖rn‖2 +
2.25

β2K

‖e‖2

+ 3.2

[

‖x− xK‖2 +
‖x− xK‖1√

K

]

and iterating

‖rn‖2 < 2−n‖xK‖2 +
5

β2K

‖e‖2

+ 6.4

[

‖x− xK‖2 +
‖x− xK‖1√

K

]

.

REFERENCES

[1] T. Blumensath and M. Davies, “How to use the iterative hard thresh-
olding algorithm,” in Proc. SPARS09, 2009.

[2] Mike Davies and Nikolaos Mitianoudis, “A simple mixture model
for sparse overcomplete ICA,” IEE Proc.-Vision, Image and Signal

Processing, vol. 151, no. 1, pp. 35–43, August 2004.
[3] C. Fevotte and S. Godsill, “Sparse linear regression in unions of bases

via bayesian variable selection,” IEEE Signal Processing Letters, vol.
13, no. 7, pp. 441–444, 2006.

[4] V. K. Goyal, M. Vetterli, and N. T. Thao, “Quantized overcomplete
expansions in RN : Analysis, synthesis and algorithms,” IEEE Transac-

tions on Information Theory, vol. 44, no. 1, pp. 16–31, Jan. 1998.
[5] Thomas Blumensath and Mike Davies, “Sparse and shift-invariant

representations of music,” IEEE Transactions on Audio, Speech and

Language Processing, vol. 14, no. 1, pp. 50–57, Jan 2006.
[6] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact

signal reconstruction from highly incomplete frequency information.,”
IEEE Transactions on information theory, vol. 52, no. 2, pp. 489–509,
Feb 2006.

[7] E. Candès, J. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,” Comm. Pure Appl. Math.,
vol. 59, no. 8, pp. 1207–1223, 2006.

[8] D. Needell and J. Tropp, “COSAMP: Iterative signal recovery from in-
complete and inaccurate samples.,” to appear in Applied Computational

Harmonic Analysis, 2008.
[9] W. Dai and O. Milenkovic, “Subspace pursuit for compressed sensing:

Closing the gap between performance and complexity,” submitted, 2008.
[10] T. Blumensath and M. Davies, “Iterative hard thresholding for com-

pressed sensing,” to appear in Applied and Computational Harmonic

Analysis, 2009.
[11] A. Cohen, W. Dahmen, and R DeVore, “Instance optimal decoding by

thresholding in compressed sensing,” preprint, 2008.
[12] Richard Baraniuk, Volkan Cevher, Marco Duarte, and Chinmay Hegde,

“Model-based compressive sensing,” preprint, 2008.
[13] T. Blumensath and M.E. Davies, “A simple, efficient and near optimal

algorithm for compressed sensing,” in Proceedings of the Int. Conf. on

Acoustics, Speech and Signal Processing, 2009.
[14] T. Blumensath and M.E. Davies, “Iterative thresholding for sparse

approximations,” Journal of Fourier Analysis and Applications, vol.
14, no. 5, pp. 629–654, 2008.

[15] N. G. Kingsbury and T. H. Reeves, “Iterative image coding with
overcomplete complex wavelet transforms,” in Proc. Conf. on Visual

Communications and Image Processing, 2003.
[16] E. Candès and M. B. Wakin, “An introduction to compressive sampling,”

IEEE Signal Processig Magazine, pp. 21–30, 2008.
[17] E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE

Transactions on Information Theory, vol. 51, pp. 4203–4215, 2004.
[18] G. H. Golub and F. Van Loan, Matrix Computations, Johns Hopkins

University Press, 3rd edition, 1996.
[19] S. Foucart and M.-J. Lai, “Sparsest solutions of underdetermined linear

systems via ell-q minimization for 0 ¡ q ¡= 1.,” manuscript, 2008.
[20] E. van den Berg and M. P. Friedlander, “Probing the Pareto frontier for

basis pursuit solutions,” SIAM J. on Scientific Computing, vol. 31, no.
2, pp. 890–912, 2008.

[21] Z.-P. Liang and P. C. Lauterbur, Principles of Magnetic Resonance
Imaging: a Signal Processing Perspective, Wiley Blackwell, 1999.

[22] T. Blumensath and M. Davies, “Gradient pursuits,” IEEE Transactions

on Signal Processing, vol. 56, no. 6, pp. 2370–2382, June 2008.
[23] E. Candès, “The restricted isometry property and its implications for

compressed sensing,” Tech. Rep., California Institute of Technology,
2008.

