
HOW TO USE THE ITERATIVE HARD THRESHOLDING ALGORITHM

T. Blumensath and M. E. Davies

ABSTRACT

Several computationally efficient algorithms have been shown to of-

fer near optimal recovery of sparse signals from a small number of

linear measurements. However, whilst many of the methods have

similar guarantees whenever the measurements satisfy the so called

restricted isometry property, empirical performance of the methods

can vary significantly in a regime in which this condition is not sat-

isfied. We here modify the Iterative Hard Thresholding algorithm by

including an automatic step-size calculation. This makes the method

independent from an arbitrary scaling of the measurement system

and leads to a method that shows state of the art empirical perfor-

mance. What is more, theoretical guarantees derived for the un-

modified algorithm carry over to the new method with only minor

changes.

Index Terms— Sparse Signal Modelling, Compressed Sensing,

Iterative Hard Thresholding, Sparse Inverse Problem

1. INTRODUCTION

We consider the following problem often encountered in signal pro-

cessing. An observation vector y ∈ R
M is given together with a

matrix Φ ∈ R
M×N , which has more columns than rows, that is

with N > M . In sparse signal processing, we are then asked to find

a vector x with most of its elements being zero and such that Φx

approximates y, that is, such that ‖y −Φx‖2 is small.

One application is in compressed sensing [1], where we assume

that a (possibly continuous) signal f has an orthonormal expansion

f =
PN

n=1 xnψn, where most of the xn are zero or negligibly

small. Instead of sampling f using traditional sampling theory, we

take M < N linear measurements ym = 〈φm, f〉. Expressing the

measurement model in matrix notation we have

y = Φx + e, (1)

where e is possible observation noise and x is sparse. The matrix Φ

has entries 〈φm, ψn〉.
It is now well understood that the problem of finding the sparsest

x given only y and Φ is a combinatorial problem and computation-

ally not feasible in general. Nevertheless, under certain conditions

on the measurement system, near optimal recovery is possible with

computationally efficient algorithms [2], [3], [4], [5]. There are now

several algorithms that offer similar performance guarantees, how-

ever, these are typically worst case bounds and, as demonstrated in

[5], empirical average performance can often vary significantly.

IDCOM & Joint Research Institute for Signal and Image Processing, The
University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh, EH9
3JL, UK Tel.: +44 (0) 131 651 3492, Fax.: +44 (0) 131 650 6554, e-mail:
thomas.blumensath@ed.ac.uk, mike.davies@ed.ac.uk

This research was supported by EPSRC grants D000246/2 and
EP/F039697/1. MED acknowledges support of his position from the Scot-
tish Funding Council and their support of the Joint Research Institute with
the Heriot-Watt University as a component part of the Edinburgh Research
Partnership.

The focus in this paper is on a simple modification to the Itera-

tive Hard Thresholding algorithm studied in [5]. In particular, a step

size parameter is included and, more importantly, an approach is sug-

gested to determine the step size automatically. The new algorithm

will be called Normalised Iterative Hard Thresholding. It can be

shown that the proposed modification guarantees that the normalised

algorithm converges. Furthermore, with this modification, the algo-

rithm is shown experimentally to be competitive to other state of the

art approaches. In addition, it can also be shown that the normalised

algorithm retains performance guarantees similar to those of the un-

modified algorithm.

2. ITERATIVE HARD THRESHOLDING

Inspired by the work in [6], the papers [7], [8] and [5] studied theo-

retical properties of an algorithm termed Iterative Hard Thresholding

(IHTK).

The algorithm is a very simple iterative procedure. Starting with

x[0] = 0 it uses the iteration

x
n+1 = HK(xn + Φ

T (y −Φx
n)), (2)

where HK(a) is the non-linear operator that sets all but the largest

(in magnitude) K elements of a to zero (non-uniqueness issues be-

ing avoided using random or deterministic heuristics).

In [7] we have shown that this algorithm converges if ‖Φ‖2 < 1,

whilst in [5] we have proven that the algorithm has near optimal

performance whenever the matrix Φ has a small restricted isometry

constant [1], which is defined as the smallest constant δK such that

(1− δK)‖x‖22 ≤ ‖Φ̂x‖22 ≤ (1 + δK)‖x‖22 (3)

holds for all vectors x with no-more than K non-zero elements.

Multiplication of Φ by a constant and division of x by the same

constant leaves the problem unaltered. Unfortunately, the original

iterative hard theresholding algorithm is sensitive to such a change

and so is the restricted isometry constant. To overcome this, one

could re-normalise Φ before running the algorithm. However, in

order to guarantee stability of the algorithm it is desirable to re-scale

Φ so that its norm is below 1, whilst from [8] we know that for good

recovery performance, it is desirable that Φ has a small restricted

isometry constant. This is best achieved by normalising Φ so that the

columns are roughly of unit length, however, in this case, stability is

no-longer guaranteed.

To demonstrate this problem, we conducted the following ex-

periment in which we generated problem instances as described in

Section 4. We compared two settings. We normalised Φ, such that

‖Φ‖2 = 1 and we normalised Φ, such that each column of Φ had

an ℓ2 norm of 1. To prevent divergence in this setting, we halted the

algorithm as soon as an increase in the cost function (see below) was

detected. For reference, we also show the results obtained with the

normalised algorithm derived below.

The results are shown in Figure 1, where we present the frac-

tion of cases in which IHTK could recover the true support of a K



0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

sparsity K/M

pr
ob

ab
ili

ty
 o

f 
ex

ac
t r

ec
ov

er
ty

Fig. 1. Exact recovery performance. Comparison between the

normalised IHT algorithm (solid), the unmodified algorithm where

‖Φ‖2 = 1 (dotted) and the unmodified algorithm where Φ has unit

norm columns and the algorithm is stopped when the cost ‖y−Φx‖2
increases (dash-dotted).

sparse vector. The dotted line shows the results for the algorithm

with ‖Φ‖2 = 1 and the dash-dotted line the results for the algorithm

with unit norm column Φ. The solid line shows the results for the

normalised algorithm derived below.

3. STABILISED ITERATIVE HARD THRESHOLDING

We here derive the modification to the iterative hard thresholding al-

gorithm1 which will guarantee the convergence to a local minimum

of the cost function and make the algorithm independently from ar-

bitrary re-scaling of Φ.

From [7] we know that convergence is guaranteed whenever

‖y − Φxn+1‖22 < (1 − c)‖y − Φxn‖22 holds in each iteration,

for some 0 < c < 1.

The iterative hard thresholding algorithm was developed to

optimises the cost function ‖y − Φx̂‖22, under the constraint that

‖x̂‖0 ≤ K [7], where ‖x̂‖0 counts the number of non-zero elements

in x̂. The algorithm is derived using a majorization minimisation

approach in which the majorized cost function

‖(y −Φx̂)‖22 + ‖x̂− x
n‖22 − ‖Φ(x̂− x

n)‖22 (4)

is optimised iteratively under the sparsity constraint. For the above

cost to majorize the cost of interest, we require that ‖Φ‖2 < 1, how-

ever, a scaling independent formulation uses the following standard

modification

‖µ0.5(y −Φx̂)‖22 + ‖x̂− x
n‖22 − ‖µ0.5

Φ(x̂− x
n)‖22, (5)

where re-scaling of Φ can be counteracted by an inverse re-scaling

of µ.

It can be shown [7] that

x
n+1 = HK(xn + µΦT (y−Φx

n)), (6)

1This modification has now been incorporated into the latest version of
the algorithm in the sparsify matlab toolbox, which can be found on the first
authors web-page. The algorithm is accessible through the call to the function
hard l0 Mterm.

calculates the minimum of this cost function under the sparsity con-

straint.

In our approach we adaptively calculate µ as follows. Let Γn be

the support set of xn and let g = ΦT (y − Φxn) be the negative

gradient of ‖y − Φx‖22 evaluated at the current estimate xn. In

cases in which xn is zero we use the index set of the largest K (in

magnitude) elements of ΦT y as the set Γn. If Γn is the support

of the best K term approximation to y, we would want to minimise

‖y−ΦΓnxΓn‖22, which, using a gradient descend algorithm, is done

using the iteration xn+1
Γn = xn

Γn + µΦT
Γn(y − ΦΓnxn

Γn). If the

support is fixed, we can calculate an optimal step-size as [9]

µ =
gT

ΓngΓn

gT
ΓnΦT

ΓnΦΓngΓn

. (7)

Note that the evaluation of this quantity requires the calculation of

ΦΓngΓn , the cost of which is equivalent to the evaluation of Φxn

and ΦT (y −Φxn), so that the cost of the algorithm only increases

by a constant factor. Note also that if ΦΓ is full rank for all Γ with

no-more than K elements, µ is bounded from above by a constant

depending only on Φ.

The iterative algorithm does no use the same set Γ[n] in each

iteration. We therefore proceed as follows. In each iteration, we

calculate µ as above and calculate a new proposition x̃n+1 using (6).

In the case in which the support of x̃n+1 is the same as that of xn,

we are guaranteed to have a maximal reduction in the cost function

and we use xn+1 = x̃n+1. However, if the support of xn+1 differs

from the support of xn, the optimality of µ is no longer guaranteed.

In this case, a sufficient condition that guarantees convergence is that

µ < ω [10], where

ω = (1− c) ‖x̃
n+1 − xn‖22

‖Φ(x̃n+1 − xn)‖22
(8)

for a small fixed constant c.
Hence, if our first proposal x̃n+1 has a different support from the

current estimate, we calculate ω and check whether µ < ω. If this

holds, we keep the new update and set xn+1 = x̃n+1. Otherwise we

need to shrink the step-size µ. We here propose the simple update

µ ← µ/2. With this smaller step-size, a new proposal x̃n+1 is

calculated using (6). This procedure is terminated when µ < ω, in

which case we accept the latest proposal and continue with the next

iteration.

We show in [10] that this procedure is guaranteed to find a new

estimate xn+1 in a finite number of steps.

Furthermore, we can prove the following theorem for our nor-

malised algorithm [10].

Theorem 1. If rank(Φ) = M and rank(ΦΓ) = K for all Γ such

that |Γ| = K, then the normalised iterative hard thresholding algo-

rithm converges to a local minimum of the optimisation problem

x
⋆ = min

x : ‖x‖0≤K
‖y −Φx‖2. (9)

Importantly, we can also derive a result that guarantees recovery

performance [10].

Theorem 2. Given a noisy observation y = Φx + e, where x is

an arbitrary vector. Let xK be an approximation to x with no more

thanK non-zero elements for which ‖x−xK‖2 is minimal. If Φ has

restricted isometry property with δ3K < 1/(2
√

32 + 1) and assume

the algorithm has in each iteration used µ =
‖gΓn‖2

2

‖ΦΓn gΓn‖2
2

, then, after



at most n⋆ =
˚

log2

`

‖xK‖2/ǫ̃K
´ˇ

iterations, the normalised iter-

ative hard thresholding algorithm estimates x with accuracy given

by

‖x−x
n⋆‖2 ≤ 7

»

‖x− x
K‖2 +

1√
K
‖x − x

K‖1 + ‖e‖2
–

. (10)

4. SIMULATIONS

The data in the next two subsections was generated as follows. For

each problem instance, we generated 128 by 256 matrices Φ by

drawing the entries from an i.i.d. Gaussian distribution with vari-

ance 1/M . We then generated K-sparse vectors x by drawing the

K non-zero elements from an i.i.d. Gaussian distribution (unless

stated otherwise). For each K in the range from 2 to 64 (in steps of

2) we generated 1 000 problem realisations.

4.1. Comparison to other state of the art methods.

To demonstrate the benefits of the normalised algorithm we com-

pare its empirical performance to the performance of two other state

of the art approaches, the Compressed Sensing Matching Pursuit

(CoSaMP) algorithm proposed in [3] (which is very similar to the

Subspace Pursuit algorithm in [4]) and an ℓ1 based approach that

minimises ‖x‖1 such that y = Φx. Figure 2 shows the results. As

the CoSaMP algorithm is not guaranteed to be stable if the restricted

isometry constant is too large, we stopped the algorithm whenever

the approximation error increased between iterations. We here com-

pare two versions of CoSaMP, one in which a least squares solution

has to be calculated in each iteration (shown in Figure 2 with dash

dotted lines) and one in which we replace the exact least squares so-

lution with several steps of conjugate gradient optimisation (shown

in Figure 2 with dotted lines, from left to right, using 3, 6 and 9

conjugate gradient iterations within each CoSaMP iteration).

We also calculated the following bound on the restricted isome-

try constant in each iteration

˛

˛

˛

˛

1− ‖Φ(xn+1 − xn)‖22
‖xn+1 − xn‖22

˛

˛

˛

˛

≤ δ2K . (11)

The dotted line with circles in Figure 2 shows the percentage of in-

stances in which this bound did not violate the requirement on the

restricted isometry constant in Theorem 2. Also shown is the per-

centage of cases in which the algorithm used µ =
‖gΓ‖2

2

‖ΦΓgΓ‖2
2

in all

iteration as required by Theorem 2 (dotted +). We see that the algo-

rithm performed well in this average case analysis far beyond the

regime where both conditions are violated. We also see that the

normalised iterative hard thresholding algorithm performed better

than CoSaMP and nearly as well as the ℓ1 based approach. Another

striking result is the difference in performance of CoSaMP with and

without the exact least squares solver. Even though both implemen-

tations have the same theoretical guarantees, in the regime in which

the required condition is not satisfied, the faster conjugate gradient

based version does not perform well.

The above experiment used Gaussian non-zero coefficients.

Many algorithms for sparse signal recovery are known to perform

worse, if the non-zero coefficients are all of equal magnitude. The

above experiment was therefore repeated with the modification that

we set the non-zero coefficients to 1 or -1. The results for this

experiment are shown in Figure 3.

There is also a striking difference in the performance of CoSaMP

based on conjugate gradient optimisation between the two different

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

sparsity K/M

pr
ob

ab
ili

ty
 o

f 
ex

ac
t r

ec
ov

er
ty

Fig. 2. Exact recovery performance where non-zero coefficients

are Gaussian distributed. Comparison between IHT (solid), ℓ1 so-

lution (dashed), CoSaMP using the pseudo inverse (dash-dotted)

and CoSaMP using (from left to right) 3, 6 or 9 conjugate gradi-

ent iterations (dotted). Also shown are the average cases in which
˛

˛

˛1− ‖Φ(xn+1−xn)‖2
2

‖xn+1−xn‖2
2

˛

˛

˛ is below 0.1 in all iterations (dotted o) and

the cases in which the algorithm used µn+1 =
‖gΓ‖2

2

‖ΦΓgΓ‖2
2

in all itera-

tions (dotted +).

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

sparsity K/M

pr
ob

ab
ili

ty
 o

f 
ex

ac
t r

ec
ov

er
ty

Fig. 3. Exact recovery performance where non-zero coefficients are

1. Comparison between IHT (solid), ℓ1 solution (dashed), CoSaMP

using the pseudo inverse (dash-dotted) and CoSaMP using (from left

to right) 3, 6 or 9 conjugate gradient iterations (dotted). Also shown

are the average cases in which

˛

˛

˛
1− ‖Φ(xn+1−xn)‖2

2

‖xn+1−xn‖2
2

˛

˛

˛
is below 0.1

in all iterations (dotted o) and the cases in which the algorithm used

µn+1 =
‖gΓ‖2

2

‖ΦΓgΓ‖2
2

in all iterations (dotted +).

distributions for the non-zero elements. The performance with Gaus-

sian coefficients was markedly worse than that observed for equal

magnitude coefficients, which is in contrast to the performance of the

normalised iterative hard thresholding algorithm, which performed

somewhat worse in the case of equal magnitude coefficients.

To indicate the computational complexity of the methods, Figure



0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

sparsity K/M

co
m

pu
ta

tio
n 

tim
e

Fig. 4. Comparison between computation time for IHT (solid), ℓ1
solution (dashed), CoSaMP using the pseudo inverse (dash-dotted)

and CoSaMP using (from top to bottom) 9, 6 or 3 conjugate gradient

iterations (dotted).

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

sparsity K/M

co
m

pu
ta

tio
n 

tim
e

Fig. 5. Zoomed in view of fig. 4. Comparison between computation

time for IHT (solid), ℓ1 solution (dashed), CoSaMP using the pseudo

inverse (dash-dotted) and CoSaMP using (from top to bottom) 9, 6

or 3 conjugate gradient iterations (dotted).

4 shows the computation time for the first experiment with Figure 5

showing a zoomed in portion of Figure 4 in the region where the al-

gorithms perform well. The implementations of CoSaMP (shown

with dash dotted lines) which requires the solution to an inverse

problem in each iteration is very slow. On the other hand, the im-

plementation based on conjugate gradient updates is much faster

but its performance is not as good. The normalised iterative hard

thresholding algorithm only requires the application of Φ and ΦT .

As these matrices are in many practical situations designed to have

fast implementations (based for example on the Fourier or wavelet

transform), the computational benefit of the iterative hard threshold-

ing algorithm will be even greater and more dramatic than shown

here for unstructured random matrices Φ. To solve the ℓ1 optimi-

sation problem, we here used the spgl1 [11] algorithm (available on

(http://www.cs.ubc.ca/labs/scl/spgl1/).

4.2. Influence of noise

The exact sparse signal model is often not very realistic and obser-

vations often have substantial noise contributions. We here study the

influence of this on the algorithm’s performance.

To study the influence of noise, we generated observations y =
Φx + e, where x was K-sparse and where the noise term e was

Gaussian. We normalised Φx and e such that we had a specific

signal to noise ratio (SNR) of 0dB, 10dB, 20dB and 30dB. The

results are shown in Figure 6. The ℓ1 method used here solved

minx̂ ‖x̂‖1 under the constraint that ‖y − Φx̂‖2 ≤ ‖e‖2, where

we assumed knowledge of ‖e‖2. Also shown is the performance of

an oracle estimator that knows the location of the K largest coef-

ficients in x and uses a least squares estimate for these coefficients

(setting the remaining coefficients to zero).

We observe that for moderate SNR values, the proposed algo-

rithm is close to the optimal performance of the oracle and outper-

forms the other approaches, at least up to a sparsity of approximately

0.25. Interestingly, the ℓ1 solution, which we did not de-bias2, per-

formed quite well for very low SNR values. Interesting here is that

the ℓ1 solution even outperformed the oracle estimate in the 0dB
setting when K/M was between 0.45 and 5. This seems to be due

to the fact that the ℓ1 solution is not constraint to be K sparse and is

intrinsically different form the oracle solution. CoSaMP performed

somewhat worse. Interestingly, once the signal became less sparse,

CoSaMP did perform markedly worse than the other approaches,

which is probably due to the instability of the algorithm.

In the next experiment, we studied the influence of ’noise’ in

the signal domain, that is, x was not exact sparse anymore. In-

stead, we generated observations y = Φx, where now x was gen-

erated, so that its coefficients decayed exponentially. In particular,

we generated x[n] = n−p, where p ∈ {1, 2, 4}. In this exper-

iment, we varied the sparsity of the solution for CoSaMP and IHT.

The ℓ1 method used here solved minx̂ ‖x̂‖1 under the constraint that

‖y −Φx̂‖2 < ‖Φ(xK − x)‖2, where x is the vector used to gen-

erate the observation and xK is the best K-term approximation to

x.

It is interesting to observe that CoSaMP remains close to the

optimal performance for sparsities above those for which IHT fails,

however, once CoSaMP fails, the performance decreases rapidly

with decreasing sparsity. Again, this is likely to be due to the fact

that we had to stop CoSaMP whenever the approximation error

increased to prevent instability.

4.3. Application to large scale problem

We now apply the normalised algorithm to a somewhat larger prob-

lem. We take this example from the application domain of magnetic

resonance imaging (MRI). An MRI scanner in effect takes slices

from the two dimensional Fourier domain of the image. For exam-

ple, if an image with a resolution of 256 by 256 pixels is required, the

scanner will have to make 256 different measurements, each mea-

suring another slice through the two dimensional Fourier domain of

the image [12]. In order to reduce scan time and the exposure of

the patient to electromagnetic radiation, it is desirable to take fewer

measurements. In this case, we can exploit the sparsity of the im-

age in the wavelet domain and use compressed sensing methods to

recover the image. In our notation, y contains the measurements

and the matrix Φ models the inverse wavelet transform, the Fourier

transform and the sub-sampling operator.

2That is, we did not calculate a least squares estimate, using the coeffi-
cients identified by the algorithm.



0 0.1 0.2 0.3 0.4 0.5
-10

0

10

20
0 dB SNR

sparsity K/M

es
tim

at
io

n 
SN

R
 in

 d
B

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30
10 dB SNR

sparsity K/M

es
tim

at
io

n 
SN

R
 in

 d
B

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40
20 dB SNR

es
tim

at
io

n 
SN

R
 in

 d
B

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50
30 dB SNR

sparsity K/M

es
tim

at
io

n 
SN

R
 in

 d
B

Fig. 6. Influence of observation noise on algorithm performance.

The observation was y = Φx + e. We compare IHT (solid), ℓ1 so-

lution (dashed) and CoSaMP (dash-dotted). Also shown is an oracle

estimate that knows the location of the non-zero coefficients (dot-

ted).

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

x
n
 = n-1

es
tim

at
io

n 
SN

R
 in

 d
B

0 0.1 0.2 0.3 0.4 0.5
10

20

30

40

50

60

x
n
 = n-2

es
tim

at
io

n 
SN

R
 in

 d
B

0 0.1 0.2 0.3 0.4 0.5

40

60

80

100

120

140

x
n
 = n-4

sparsity K/M

es
tim

at
io

n 
SN

R
 in

 d
B

Fig. 7. Influence of noise in signal domain. Here the signal x was

generated using x[n] = n−p, for p ∈ {1, 2, 4}. We compare IHT

(solid), ℓ1 solution (dashed) and CoSaMP (dash-dotted). Also shown

is an oracle estimate that knows the location of the largest K non-

zero coefficients (dotted).



0.1 0.12 0.14 0.16 0.18 0.2
20

40

60

80

100

120

140

ratio of measurments to signal dimension

PS
N

R
 in

 d
B

 

 

IHT

OMP

GP

L1

Fig. 8. Performance in recovering the Shepp-Logan phantom using

radial line measurements. Ratio of measurements to signal dimen-

sion (x-axis) vs. peak signal to noise ratio (y-axis) (thresholded at

130 dB PSNR). Results are shown for Iterative Hard Thresholding

algorithm (IHT), Orthogonal Matching Pursuit (OMP), ’Approxi-

mate’ Conjugate Gradient Pursuit (GP) and ℓ1 optimisation (L1).

The Shepp-Logan phantom has emerged as a standard test prob-

lem for compressed sensing algorithms and we use it here to also

test the iterative hard thresholding algorithm. We here take between

30 and 52 radial slices from the Fourier domain and reconstruct the

phantom from these measurements assuming sparsity in the Haar

wavelet domain. The results are shown in Figure 8, where we also

show the results obtained with a range of other algorithms as re-

ported previously in [13]. In particular, we show the results for

the (approximate conjugate) Gradient Pursuit algorithm (GP) [13],

the results obtained using Orthogonal Matching Pursuit (OMP) and

an ℓ1 based approach minimising ‖y − Φx‖22 + λ‖x‖1, where λ
was chosen experimentally so that the algorithm recovered approxi-

mately 4000 non-zero elements, which was the number of non-zero

elements found in the wavelet representation of the original image.

See [13] for more details on this experiment.

It can be seen that the Iterative Hard Thresholding algorithm

performs as well as or better than the other approaches.

5. CONCLUSIONS

Numerical studies of the iterative hard thresholding algorithm re-

ported in [7] were not very promising. This is likely to be due to the

fact that in [7], the matrix Φ was normalised such that it’s largest

singular value was below 1 to guarantee stability. The theoretical

analysis of the algorithm in [8] and [5] suggests that it is desirable

that the algorithm satisfies the RIP condition, such that the singu-

lar values of all 3K element sub-matrices are centred around 1. A

similar observation has been made here numerically. The problem

however is then that we need to guarantee the stability of the algo-

rithm. This was done here by the introduction of a simple adaptive

step size. With this normalisation, the algorithm becomes indepen-

dent of an arbitrary scaling of Φ and its convergence is guaranteed.

Furthermore, a recovery result can also be derived that guarantees

that the result is near optimal in certain circumstances.

The optimal recovery result stated here only holds in the case

in which the algorithm uses the step-size in equation 7, however, a

more general result can also be derived. In this case, the requirement

on the restricted isometry constant will depend on the smallest step-

size used, which is bounded from below. Furthermore, empirical

evidence suggest that as long as the restricted isometry constant sat-

isfies the condition of Theorem 2, the step-size in equation 7 is gen-

erally used, so that the result given here is typically in force. Only

if the restricted isometry property fails to hold does the algorithm

start to use a smaller step-size in some iterations. Our normalisation

therefore offers a compromise that allows strong theoretical guar-

antees whenever Φ satisfies the restricted isometry property with a

small constant δ3K . In the regime where this property fails, the algo-

rithm then still remains stable and empirically shows good average

performance.

6. REFERENCES

[1] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty prin-

ciples: Exact signal reconstruction from highly incomplete fre-

quency information.,” IEEE Transactions on information the-

ory, vol. 52, no. 2, pp. 489–509, Feb 2006.

[2] E. Candès, J. Romberg, and T. Tao, “Stable signal recovery

from incomplete and inaccurate measurements,” Comm. Pure

Appl. Math., vol. 59, no. 8, pp. 1207–1223, 2006.

[3] D. Needell and J. Tropp, “COSAMP: Iterative signal recov-

ery from incomplete and inaccurate samples.,” to appear in

Applied Computational Harmonic Analysis, 2008.

[4] W. Dai and O. Milenkovic, “Subspace pursuit for compressed

sensing: Closing the gap between performance and complex-

ity,” submitted, 2008.

[5] T. Blumensath and M. Davies, “Iterative hard thresholding for

compressed sensing,” to appear in Applied and Computational

Harmonic Analysis, 2009.

[6] N. G. Kingsbury and T. H. Reeves, “Iterative image cod-

ing with overcomplete complex wavelet transforms,” in Proc.

Conf. on Visual Communications and Image Processing, 2003.

[7] T. Blumensath and M.E. Davies, “Iterative thresholding for

sparse approximations,” Journal of Fourier Analysis and Ap-

plications, vol. 14, no. 5, pp. 629–654, 2008.

[8] T. Blumensath and M.E. Davies, “A simple, efficient and near

optimal algorithm for compressed sensing,” in Proceedings

of the Int. Conf. on Acoustics, Speech and Signal Processing,

2009.

[9] G. H. Golub and F. Van Loan, Matrix Computations, Johns

Hopkins University Press, 3rd edition, 1996.

[10] T. Blumensath and M.E. Davies, “A modified iterative hard

thresholding algorithm with guaranteed performance and sta-

bility,” in preparation, 2009.

[11] E. van den Berg and M. P. Friedlander, “Probing the Pareto

frontier for basis pursuit solutions,” SIAM J. on Scientific Com-

puting, vol. 31, no. 2, pp. 890–912, 2008.

[12] Z.-P. Liang and P. C. Lauterbur, Principles of Magnetic Reso-

nance Imaging: a Signal Processing Perspective, Wiley Black-

well, 1999.

[13] T. Blumensath and M. Davies, “Gradient pursuits,” IEEE

Transactions on Signal Processing, vol. 56, no. 6, pp. 2370–

2382, June 2008.


