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Abstract. This paper considers the inversion of ill-posed linear operators. To

regularise the problem the solution is enforced to lie in a non-convex subset. Theoretical

properties for the stable inversion are derived and an iterative algorithm akin to the

projected Landweber algorithm is studied. This work extends recent progress made on

the efficient inversion of finite dimensional linear systems under a sparsity constraint

to the Hilbert space setting and to more general non-convex constraints.
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1. Introduction

Let T be a linear map between two Hilbert spaces H and L. For f ∈ H it is often

required to recover f given Tf . Furthermore, this inversion should be stable to small

perturbations, that is, given

g = Tf + e, (1)

where g ∈ L, e ∈ L and f ∈ H are elements in their respective Hilbert spaces, the

estimate of f given g should linearly depend on the size of the error e. In many

cases of interest, the operator T is ill-conditioned or non-invertible and some form of

regularisation is required [1]. One possible approach to regualrisation is to assume that

f lies in or close to a convex subset A ⊂ H . Under certain conditions, stable inversion

is then possible. We here extend this approach to more general non-convex sets A ⊂ H .

We define and study an ’optimal’ solution to the inverse problem and propose a projected

Landweber algorithm to efficiently calculate a solution with similar error bounds than

those derived for the ’optimal’ solution.

Our treatment is motivated by recent work in signal processing, where sparse signal

models have gained increasing interest. It has been recognized that (under certain

conditions) many finite dimensional inverse problems can be solved efficiently whenever

the solution is sparse enough in some basis, that is, whenever the solution admits a

representation in which most of its elements are zero or negligibly small [2], [3], [4] and

[5].

In sparse inverse problems, where f ∈ R
N and g ∈ R

M , we assumed f to have only

K << N non-zero elements. In the noiseless setting, that is if e = 0, it is then necessary

to identify that point f in the affine subspace defined by Tf , that has the fewest non-

zero elements. The sparse inverse problem is a constrained inverse problem in which

the constraint set is non-convex. More precisely, the constraint set is the union of
(

N
K

)

K-dimensionl subspaces, where each subspaces is spanned by a different combination of

K canonical basis vectors. More general union of subspaces can be considered [6] and

[7].

Solving sparse inverse problems is known to be NP-hard in general [8]. However,

under certain conditions it could be shown that polynomial time algorithms can find

near optimal solutions [2], [3], [4] and [5]. We here extend these ideas to linear inverse

problems in more general Hilbert spaces and study general non-convex constraint sets.

Given (1) and assuming that T is ill-conditioned or non-invertible, we assume that

f lies in a set A, where A ⊂ H . Importantly, we allow the set A to be non-convex in

general.

In this general set-up, three important questions arise.

(i) Assuming f ∈ A and e = 0, under which conditions can we recover f from Tf?

(ii) Under which conditions is this inversion stable to small perturbations e, that is,

under which conditions can we guarantee that the inverse of Tf + e is ’close’ to the

inverse of Tf?
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(iii) How and under which conditions can we calculate the inversion efficiently?

The answer to the first question is that we require T to be one to one as a map

from A to L. This is clearly necessary and sufficient for the recovery of f ∈ A from Tf .

If A is a compact subset of Euclidean space, then we can lower bound the dimension

of L using Whitney’s Embedding Theorem [9, chapter 10] and its probabilistic version

by Sauer et al. [10] that states that

Theorem 1 (Theorem 2.3 [10]). Assume a compact subset A of RN with box counting

dimension k and let M > 2k, then almost all smooth maps F from R
N to R

M have the

property that F is one to one on A.

Importantly, the above result also holds for almost all linear embeddings. In this

case, the result can easily be generalized to non-compact subsets of R
N by considering

the box counting dimension of the projection of the set A \ 0 onto the unit sphere.

However, the one to one property does not tell use anything about stability of the

inverse, neither about how we would go about calculating such an inverse.

For f ∈ A, in order to guarantee stability to perturbations e, it is necessary to

impose a bi-Lipschitz condition on T as a map from A ⊂ H to TA ⊂ L, that is, we

require that there exist constants 0 < α ≤ β, such that for all f1, f2 ∈ A we have

α‖f1 + f2‖2 ≤ ‖T (f1 + f2)‖2 ≤ β‖f1 + f2‖2. (2)

The existence of such maps has been studied in [11].

Note that this condition guarantees that T is one to one as a function from A to

TA. We are therefore able, at least in theory, to invert T . The condition also guarantees

stability in that if we are given an observations g = Tf + e = TfA + T (f − fA) + e,

where fA ∈ A, then we could, at least in theory, recover a good approximation of f

by first choosing ĝ to be the ’projection’ (see below how this can be defined for general

subsets of Hilbert space) of g onto a close element in TA and then taking f̂ ∈ A so that

ĝ = T f̂ . We show below that the bi-Lipschitz property of T guarantees that f̂ is close

to f , where the distance depends on T (f − fA) + e. Note however that the bi-Lipschitz

constant does not bound T (f −fA) in general, so that we also require T to be bounded,

i.e. continuous.

Unfortunately, how the above recovery of f is to be done efficiently for general sets

A is not clear. We here propose an algorithm and show that under certain conditions on

α and β we can efficiently calculate near optimal solutions. In order for our algorithm

to be useful, we require that we are able to efficiently calculate the ’projection’ of any

f onto A.

In inverse problems, the operator T is generally given. However, we have to choose

A. On the one hand, we want to choose A in accordance with prior knowledge about

reasonable solutions for a given problem. On the other hand, the stability considerations

discussed above as well as the requirements in our theory developed below, show that

we want the set A be chosen so that T is bi-Lipschitz as a map from A to L.
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2. An ’optimal’ solution

Let us here formalize the solution to the general inversion problem (1), under the

constraint that f ∈ A as outlined above. We first define what we mean by a projection

onto a general-non-convex set. For any g ∈ L, consider

inf
f∈A

‖g − Tf‖2. (3)

If A is non-empty, then by the properties of the infirmum and the fact that the norm is

bounded from below, the above infirmum exists and is finite. However, there might not

exist an f̃ ∈ A such that ‖g − T f̃‖2 = inff∈A ‖g − Tf‖2. In this case, we will consider

estimates f̃ that are close to this infirmum.

The definition of the infirmum and the fact that inff∈A ‖g − Tf‖2 < ∞ prove the

following trivial fact.

Lemma 2. Let A be a nonempty closed subset of a Hilbert space H. Let T be a linear

operator form H into a Hilbert space L, then for all ε > 0 and g ∈ L, there exist an

element f̃ ∈ A for which

‖g − T f̃‖ ≤ inf
f∈A

‖g − Tf‖ + ε. (4)

We can therefore define the set-valued mapping

mε
A(g) = {f̃ : ‖g − T f̃‖2 ≤ inf

f∈A
‖g − Tf‖2 + ε}. (5)

By the above lemma, the sets mε
A(f) are non-empty for all ε > 0, so that we can define

ε-optimal estimates as those points

f ε
opt ∈ mε

A(f). (6)

Similarly, we can define the set-valued mapping

pε
A(f) = {f̃ : ‖f − f̃‖2 ≤ inf

f̂∈A
‖f − f̂‖2 + ε}. (7)

and the ε-projection

P ε
A(f) = S(pε

A(f)), (8)

where S is a selection operator that returns a single element from a set. The form of

this operator is of no consequence for the rest of the discussion as long as it returns a

single element.

We can now define ê = g − Tf ε
opt, f δ

A = P δ
A(f) and g − Tf δ

A = ẽ. We have as a

direct consequence of the definition of f ε
opt that

‖g − Tf ε
opt‖ = ‖ê‖ ≤ ‖g − Tf δ

A‖ +
√

ε = ‖ẽ‖ +
√

ε. (9)

To bound the error of estimates f ε
opt we use the following lemma

Lemma 3. If T is a bi-Lipschitz map from a nonempty set A to L with bi-Lipschitz

constants α, β > 0, then

‖f δ
A − f ε

opt‖ ≤ 1√
α

[

2‖ẽ‖ +
√

ε
]

(10)
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Proof.

‖f δ
A − f ε

opt‖ ≤ 1√
α
‖Tf δ

A − Tf ε
opt‖

≤ 1√
α

[

‖g − Tf ε
opt‖ + ‖g − Tf δ

A‖
]

(11)

and the Theorem follows form (9).

This result implies

Theorem 4. If T is a bounded linear operator from H to L that satisfies the bi-Lipschitz

condition as a map from A ⊂ H to L with constants α, β > 0, then, for any δ, ε > 0 the

estimate f ε
opt satisfies the bound

‖f − f ε
opt‖ ≤ 2√

α
‖T (f − f δ

A) + e‖ + inf
f̃∈A

‖f − f̃‖ +

√
ε√
α

+
√

δ. (12)

Proof. Using 3 and the triangle inequality we have

‖f − f ε
opt‖ ≤ 1√

α

[

2‖ẽ‖ +
√

ε
]

+ ‖f − f δ
A‖

≤ 2√
α
‖ẽ‖ + inf

f̃∈A
‖f − f̃‖ +

√
ε√
α

+
√

δ (13)

from which the theorem follows by the definition of ẽ.

3. The Iterative Projection Algorithm

In the previous section we have studied the estimate

f ε
opt = S(mε

A(g)), (14)

and bounded the error ‖f−fopt‖ if T is bi-Lipschitz from A to L. However, it is not clear

how to calculate fopt for general sets A. We therefore propose an iterative algorithm in

which the above optimization is replaced by a series of ε-projections. Importantly, we

show that, under certain conditions on the bi-Lipschitz constants α and β, this algorithm

has a similar error bound to that of fopt given above.

The Iterative Projection Algorithm is a generalization of the Projected Landweber

Iteration [12] to non-convex sets and an extension of the Iterative Hard Thresholding

algorithm of [13], [14] and [5] to more general constrained inverse problems.

Given g and T , let f 0 = 0 and ε ≥ εn > 0. The Iterative Projection Algorithm is

the iterative procedure defined by the recursion

fn+1 = P εn

A (fn + µT ∗(g − Tfn)), (15)

where T ∗ is the adjoint of T .

In many problems, calculation of P ε
A(a) is much easier than a brute force search for

f ε
opt. For example, in the K-sparse model, P ε

A(a) simply keeps the largest (in magnitude)
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K elements of a sequence a and sets the other elements to zero. The next result shows

that under certain conditions, not only does the algorithm calculate solutions with

an error guarantee similar to that of fopt, it does so in a fixed number of iterations

(depending only on a form of signal to noise ratio).

We have the following main result.

Theorem 5. Given g = Tf + e where f ∈ H. Let A ⊂ H be non-empty such that T is

bi-Lipschitz as a map from A to L with constants α and β that satisfy β ≤ 1
µ

< 1.5α,

then, after

n? =











2
ln(δ

‖ẽ‖+
√

ε
2µ

‖fA‖
)

ln(2/(µα) − 2)











(16)

iterations, the Iterative Projection Algorithm calculates a solution fn?

satisfying

‖f − fn?‖ ≤ (c0.5 + δ)(‖ẽ‖ +

√

ε

2µ
) + ‖fA − f‖. (17)

where c ≤ 4
3α−2µ

and ẽ = T (f − fA) + e.

Note that this is of the same order as the bound for fµ
opt.

The above theorem has been proved for the K-sparse model in [5] and for constraint

sparse models in [15]. Our main contribution is to show that it holds for general

constrained inverse problems, as long as the bi-Lipschitz property holds with appropriate

constants. To derive the result, we pursue a slightly different approach to that in [5]

and [15] and instead follow ideas of [16]. The approach used here is basically that used

for union of subspace models in [17].

We first establish the following lemma.

Lemma 6. Let r = 2T ∗(g − Tfn) and fn+1 = P εn

A (fn + µT ∗(g − Tfn)). If 1
µ
≥ β then

‖g − Tfn+1‖2 − ‖g − Tfn‖2

≤ − Re〈(fA − fn), r〉 +
1

µ
‖fA − fn‖2 +

εn

µ
(18)

Proof. We have

− Re〈(f − fn), r〉 +
1

µ
‖(f − fn)‖2

=
1

µ
[‖f − fn − µ

2
r‖2 − (µ/2)2‖r‖2], (19)

so that on the one hand

‖g − Tfn+1‖2 − ‖g − Tfn‖2

= − Re〈(fn+1 − fn), r〉 + ‖T (fn+1 − fn)‖2

≤ − Re〈(fn+1 − fn), r〉 +
1

µ
‖(fn+1 − fn)‖2



Non-convexly constrained linear inverse problems 7

and on the other hand

inf
f∈A

−Re〈(f − fn), r〉 +
1

µ
‖(f − fn)‖2

=
1

µ
[ inf
f∈A

‖f − fn − µ

2
r‖2 − (µ/2)2‖r‖2]

≥ 1

µ
[‖fn+1 − fn − µ

2
r‖2 − (µ/2)2‖r‖2 − ε]

= − Re〈(fn+1 − fn), r〉 +
1

µ
‖(fn+1 − fn)‖2 − ε

µ
, (20)

where the inequality comes from the definition of P εn

A

We have thus shown that fn+1 = P ε
A(fn + µ

2
r) implies

−Re〈(fn+1 − fn), r〉 +
1

µ
‖(f̃ − fn)‖2

≤ −Re〈(f̃ − fn), r〉 +
1

µ
‖(f̃ − fn)‖2 +

ε

µ
(21)

for all f̃ ∈ A. Because fA ∈ A, this implies that

−Re〈(fA − fn), r〉 +
1

µ
‖(fA − fn)‖2 +

ε

µ

≥ −Re〈(fn+1 − fn), r〉 +
1

µ
‖(fn+1 − fn)‖2. (22)

Proof of Theorem 5. Using fA = P ε
A(f)

‖f − fn+1‖ ≤ ‖fA − fn+1‖ + ‖fA − f‖. (23)

where the bi-Lipschitz property implies that

‖fA − fn+1‖2 ≤ 1

α
‖T (fA − fn+1)‖2. (24)

Furthermore

‖T (fA − fn+1)‖2 = ‖g − Tfn+1 − ẽ‖2

= ‖g − Tfn+1‖2 + ‖ẽ‖2 − 2Re〈ẽ, (g − Tfn+1)〉
≤ ‖g − Tfn+1‖2 + ‖ẽ‖2 + ‖ẽ‖2 + ‖g − Tfn+1‖2

= 2‖g − Tfn+1‖2 + 2‖ẽ‖2, (25)

where the last inequality follows from

− 2Re〈ẽ, (g − Tfn+1)〉
= − ‖ẽ + (g − Tfn+1)‖2 + ‖ẽ‖2 + ‖(g − Tfn+1)‖2

≤ ‖ẽ‖2 + ‖(g − Tfn+1)‖2. (26)

We will now show that under the Lipschitz assumption of the theorem,

‖g − Tfn+1‖2 ≤ (
1

µ
− α)‖(fA − fn)‖2 + ‖ẽ‖2. (27)
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We have

‖g − Tfn+1‖2 − ‖g − Tfn‖2

≤ − Re〈(fA − fn), r〉 +
1

µ
‖fA − fn‖2 +

ε

µ

= − Re〈(fA − fn), r〉 + α‖fA − fn‖2 + (
1

µ
− α)‖fA − fn‖2 +

ε

µ

≤ − Re〈(fA − fn), r〉 + ‖T (fA − fn)‖2 + (
1

µ
− α)‖fA − fn‖2 +

ε

µ

= ‖g − TfA‖2 − ‖g − Tfn‖2 + (
1

µ
− α)‖fA − fn‖2 +

ε

µ

= ‖ẽ‖2 − ‖g − Tfn‖2 + (
1

µ
− α)‖(fA − fn)‖2 +

ε

µ
(28)

where the first inequality is due to Lemma 6.

Combining the above inequalities shows that

‖fA − fn+1‖2 ≤ 2

(

1

µα
− 1

)

‖(fA − fn)‖2 +
4

α
‖ẽ‖2 +

2ε

µα
, (29)

so that 2( 1
µα

− 1) < 1 implies that

‖fA − fk‖2 ≤
(

2

(

1

µα
− 1

))k

‖fA‖2 + c‖ẽ‖2 + c
ε

2µ
, (30)

where c ≤ 4
3α−2 1

µ

.

The theorem then follows by the bound

‖f − fk‖ ≤

√

(

2
1

µα
− 2

)k

‖fA‖2 + c‖ẽ‖2 + c
ε

2µ
+ ‖fA − f‖

≤
(

2
1

µα
− 2

)k/2

‖fA‖ + c0.5‖ẽ‖ + c0.5

√

ε

2µ
+ ‖fA − f‖, (31)

which means that after n? =









2
ln(δ

‖ẽ‖+
√

ε
2µ

‖fA‖
)

ln(2/(µα)−2)









iterations we have

‖f − fn?‖ ≤ (c0.5 + δ)(‖ẽ‖ +

√

ε

2µ
) + ‖fA − f‖. (32)

4. Convergence

Whilst we cannot yet show that the algorithm converges, we can show that it will

’converge’ to a neighborhood of f δ
opt.
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Theorem 7. Under the assumptions of Theorem 5 and using εn-projections in iteration

n, where εn → 0, then as n → ∞
‖f δ

opt − fn‖2 → c‖T (f − f δ
opt) + e‖2 (33)

Proof. Mirroring the derivation that let to (29) but replacing fA by f δ
opt shows that

‖f δ
opt−fn+1‖2 ≤ 2

(

1

µα
− 1

)

‖(f δ
opt−fn)‖2+

4

α
‖T (f−f δ

opt)+e‖2+
2εn

µα
.(34)

If 2( 1
µα

− 1) < 1, for each N and k > N ,

‖f δ
opt − fk‖2

≤
(

2

(

1

µα
− 1

))k−N

‖f δ
opt − fN‖2 + c‖T (f − f δ

opt) + e‖2 + c
εN

2µ
, (35)

where again c ≤ 4
3α−2 1

µ

. Because ‖f δ
opt − fN‖2 is bounded from above by (35), so that

in the limit k → ∞
‖f δ

opt − fk‖2 → c‖T (f − f δ
opt) + e‖2 + c

εN

2µ
(36)

and this holds for all N > 0, so that the result follows by letting N → ∞.

————————————————————————-
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