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Vanishingly Sparse Matrices and Expander Graphs,
with application to compressed sensing

Bubacarr Bah, and Jared Tanner,

Abstract—We consider a probabilistic construction of sparse
random matrices where each column has a fixed number of
nonzeros whose row indices are drawn uniformly at random.
These matrices have a one-to-one correspondence with the adja-
cency matrices of fixed left degree expander graphs. We present
formulae for the expected cardinality of the set of neighbors for
these graphs, and present tail bounds on the probability that
this cardinality will be less than the expected value. Deducible
from these bounds are similar bounds for theexpansion of the
graph which is of interest in many applications. These bounds are
derived through a more detailed analysis of collisions in unions
of sets using adyadic splitting technique. The exponential tail
bounds yield the best known bounds for theℓ1 norm of large
rectangular matrices when restricted to act on vectors withfew
nonzeros; this quantity is referred to as theℓ1 norm restricted
isometry constants (RIC1) of the matrix. These bounds allow for
quantitative theorems on existence of expander graphs and hence
the sparse random matrices we consider and also quantitative
compressed sensing sampling theorems when using sparse non
mean-zero measurement matrices.

Index Terms—Algorithms, compressed sensing, signal process-
ing, sparse matrices, expander graphs.

I. I NTRODUCTION

Sparse matrices are particularly useful in applied and com-
putational mathematics because of their low storage complex-
ity and fast implementation as compared to dense matrices,
see [1], [2], [3]. Of late, significant progress has been madeto
incorporate sparse matrices in compressed sensing, with [4],
[5], [6], [7] giving both theoretical performance guarantees and
also exhibiting numerical results that shows sparse matrices
coming from expander graphs can be as good sensing matrices
as their dense counterparts. In fact, Blanchard and Tanner [8]
recently demonstrated in a GPU implementation how well
these type of matrices do compared to dense Gaussian and
Discrete Cosine Transform matrices even with very small fixed
number of nonzeros per column (as considered here).

In this manuscript we consider random sparse matrices that
are adjacency matrices of lossless expander graphs. Expander
graphs are highly connected graphs with very sparse adjacency
matrices, a precise definition of a lossless expander graph is
given in Definition 1.1 and their diagrammatic illustrationin
Figure 1.

Definition 1.1:G = (U, V,E) is a lossless(k, d, ǫ)-
expander if it is a bipartite graph with|U | = N left vertices,
|V | = n right vertices and has a regular left degreed, such
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that anyX ⊂ U with |X | ≤ k has |Γ(X)| = (1− ǫ) d|X |
neighbors.1

Remark 1.2: 1) The graphs arelosslessbecauseǫ≪ 1;
2) They are calledunbalanced expanderswhenn≪ N ;
3) The expansionof a lossless(k, d, ǫ)-expander graph is

(1− ǫ) d.

Fig. 1. Illustration of a lossless(k, d, ǫ)-expander graphs withk = 4 and
d = 2.

Such graphs have been well studied in theoretical computer
science and pure mathematics and have many applications
including: Distributed Routing in Networks, Linear Time
Decodable Error-Correcting Codes, Bitprobe Complexity of
Storing Subsets, Fault-tolerance and a Distributed Storage
Method, and Hard Tautologies in Proof Complexity, see [10]
or [9] for a more detailed survey. Pinsker and Bassylago [11]
proved the existence of lossless expanders and showed that any
random left-regular bipartite graph is, with high probability,
an expander graph. Probabilistic constructions with optimal
parametersn,N exist but are not suitable for the applications
we consider here. Deterministic constructions only achieve
sub-optimal parameters, see Guruswami et. al. [12].

Our main contribution, is the presentation of quantitative
guarantees on the probabilistic construction of these objects
in the form of a bound on the tail probability of the size of

1Lossless expanderswith parametersd, k, n,N are equivalent tolossless
conductorswith parameters that are base 2 logarithms of the parametersof
lossless expanderssee [9], [5] and the references therein.
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theset of neighbors, Γ(X) for a givenX ⊂ U , of a randomly
generated left-degree bipartite graph. Moreover, we provide
deducible bounds on the tail probability of theexpansionof
the graph,|Γ(X)|/|X |. We derive quantitative guarantees for
randomly generated non-mean zero sparse binary matrices to
be adjacency matrices of expander graphs. In addition, we
derive the first phase transitions showing regions in parameter
space that depicting when a left-regular bipartite graph with a
given set of parameters is guaranteed to be a lossless expander
with high probability. The key innovation in this paper is the
use of a novel technique ofdyadic splitting of sets. We derived
our bounds using this technique and apply them to deriveℓ1
restricted isometry constants (RIC1).

Numerous compressed sensing algorithms have been de-
signed for sparse matrices [4], [5], [6], [7]. Another contribu-
tion of our work is the derivation of sampling theorems, pre-
sented as phase transitions, comparing performance guarantees
for some of these algorithms as well as the more traditionalℓ1
minimization compressed sensing formulation. We also show
how favorably ℓ1 minimization performance guarantees for
such sparse matrices compared to whatℓ2 restricted isome-
try constants (RIC2) analysis yields for the dense Gaussian
matrices. For this comparison, we used sampling theorems
and phase transitions from related work by Blanchard et. al.
[13] that provided such theorems for dense Gaussian matrices
based onRIC2 analysis.

The outline of the rest of this introduction section goes as
follows. In Section I-A we present our main results in Theorem
1.6 and Corollary 1.7. In Section I-B we discussRIC1 and its
implication for compressed sensing, leading to two sampling
theorems in Corollaries 1.10 and 1.11.

A. Main results

Our main results is about a class of sparse matrices coming
from lossless expander graphs, a class which include non-mean
zero matrices. We start by defining the class of matrices we
consider and a key concept of aset of neighborsused in the
derivation of the main results of the manuscript.

Definition 1.3: Let A be ann×N matrix with d nonzeros
in each column. We refer toA as a random

1) sparse expander (SE) if every nonzero has value1
2) sparse signed expander (SSE) if every nonzero has value

from {−1, 1}
and the support set of thed nonzeros per column are drawn
uniformly at random, with each column drawn independently.

SE matrices are adjacency matrices of lossless(k, d, ǫ)-
expander graphs while SSE matrices have random sign pat-
terns in the nonzeros of an adjacency matrix of a lossless
(k, d, ǫ)-expander graph. IfA is either an SE or SSE it will
have onlyd nonzeros per column and since we fixd≪ n, A is
therefore “vanishingly sparse.” We denoteAS as a submatrix
of A composed of columns ofA indexed by the setS with
|S| = s. To aid translation between the terminology of graph
theory and linear algebra we define theset of neighborsin
both notation.

Definition 1.4: Consider a bipartite graphG(U, V,E)
whereE is the set of edges andeij = (xi, yj) is the edge that

connects vertexxi to vertexyj. For a given set of left vertices
S ⊂ U its set of neighbors isΓ(S) = {yj|xi ∈ S andeij ∈
E}. In terms of the adjacency matrix,A, of G(U, V,E) the
set of neighbors ofAS for |S| = s, denoted byAs, is the set
of rows with at least one nonzero.

Definition 1.5: Using Definition 1.4 the expansion of the
graph is given by the ratio|Γ(S)|/|S|, or equivalently,|As|/s.

By the definition of a lossless expander, Definition 1.1, we
need|Γ(S)| to be large for every smallS ⊂ U . In terms of
the class of matrices defined by Definition 1.3, for everyAS
we want to have|As| as close ton as possible, wheren is
the number of rows. Henceforth, we will only use the linear
algebra notationAs which is equivalent toΓ(S). Note that
|As| is a random variable depending on the draw of the set of
columns,S, for each fixedA. Therefore, we can ask what is
the probability that|As| is not greater thanas, in particular
whereas is smaller than the expected value of|As|. This is
the question that Theorem 1.6 to answers. We then use this
theorem withRIC1 to deduce the corollaries that follow which
are about the probabilistic construction of expander graphs, the
matrices we consider, and sampling theorems of some selected
compressed sensing algorithms.

Theorem 1.6:For fixeds, n,N andd, let ann×N matrix,
A be drawn from either of the classes of matrices defined in
Definition 1.3, then

Prob(|As| ≤ as) < pmax(s, d)

× exp [n ·Ψ(as, . . . , a2, d)] (1)

wherepmax(s, d) is given by

pmax(s, d) =
2

25
√
2πs3d3

, and (2)

Ψ(as, . . . , a2, d) =
1

n

[ ⌈s/2⌉∑

i=1

s

2i

(
(n− ai) · H

(
a2i − ai
n− ai

)

+ai · H

(
a2i − ai
ai

)
− n · H

(ai
n

))
+ 3s log (5d)

]
(3)

wherea1 := d. If no restriction is imposed onas then theai
for i > 1 take on their expected valuêai given by

â2i = âi

(
2− âi

n

)
for i = 1, 2, 4, . . . , ⌈s/2⌉. (4)

If as is restricted to be less than̂as, then theai for i > 1 are
the unique solutions to the following polynomial system

a32i−2aia
2
2i+2a2ia2i−a2i a4i = 0 for i = 1, 2, . . . , ⌈s/4⌉ (5)

with a2i ≥ ai for eachi.
Corollary 1.7: For fixeds, n,N, d and0 < ǫ < 1/2, let an

n×N matrix,A be drawn from the class of matrices defined
in Definition 1.3, then

Prob(‖ASx‖1 ≤ (1− 2ǫ)d‖x‖1) < pmax(s, d)

× exp [n ·Ψ(s, d, ǫ)] (6)

whereΨ(s, d, ǫ) = Ψ (as, . . . , a2, d) in (3) with as = (1 −
ǫ)ds andpmax(s, d) is the polynomial in (2).



3

Theorem 1.6 and Corollary 1.7 allow us to calculate
s, n,N, d, ǫ where the probability of the probabilistic construc-
tions in Definition 1.3 not being a lossless(s, d, ǫ)-expander
is exponentially small. For moderate values ofǫ this allows us
to make quantitative sampling theorems for some compressed
sensing reconstruction algorithms.

B. RIC1 and its implications to Compressed Sensing

In compressed sensing, and by extension in sparse ap-
proximation, we observe the effect of the application of a
matrix to a vector of interest and we endeavor to recovery this
vector of interest by exploiting the inherent simplicity inthis
vector. Precisely, letx ∈ R

N , be the vector of interest whose
simplicity is that it hask < N nonzeros, which we refer to as
k−sparse; then we observey ∈ R

n, as the measurement vector
resulting from the multiplication ofx by ann×N matrix,A.
The minimum simplicity reconstruct ofx can be written as

min
x∈χN

‖x‖0 subject to Ax = y, (7)

whereχN is the set of allk−sparse vectors and‖z‖0 counts
the nonzero components ofz; this model may be reformulated
to include noise in the measurements. References [14], [15],
[16], [17] give detailed introductions to compressed sensing
and its applications; while [18], [19], [20], [21], [22], [5], [6],
[23], [4], [24] provide information on some of the popular
computationally efficient algorithms used to solve problem(7)
and its reformulations.

We are able to give guarantees on the quality of the
reconstructed vector fromA and y from a variety of recon-
struction algorithms. One of these guarantees is a bound on the
approximation error between our recovered vector, sayx̂, and
the original vector by the bestk-term representation error i.e.
‖x− x̂‖1 ≤ Const.‖x−xk‖1 wherexk is the optimalk-term
representation forx. This is possible ifA has smallRIC1,
in other wordsA satisfies theℓ1 restricted isometry property
(RIP-1), introduced by Berinde et. al. in [5] and defined as
thus.

Definition 1.8 (RIP-1):Let χN be the set of allk−sparse
vectors, then ann × N matrix A has RIP-1, with the lower
RIC1 being the smallestL(k, n,N ;A), when the following
condition holds.

(1− L(k, n,N ;A)) ||x||1 ≤ ||Ax||1 ≤ ||x||1 ∀x ∈ χN . (8)

For computational purposes it is preferable to haveA sparse,
but little quantitative information onL(k, n,N ;A) has been
available for large sparse rectangular matrices. Berinde et.
al. in [5] showed that scaled adjacency matrices of lossless
expander graphs (i.e. scaled SE matrices) satisfy RIP-1, and
the same proof extends to the signed adjacency matrices (i.e.
so called SSE matrices).

Theorem 1.9:If an n × N matrix A is either SE or SSE
defined in Definition 1.3, thenA/d satisfies RIP-1 with
L(k, n,N ;A) = 2ǫ.

Proof: The proof of the signed case (SSE) follows that of
the unsigned case (SE) in [5] but with absolute values included
in the appropriate stages.

Based on Theorem 1.9 which guarantees RIP-1, (8), for
the class of matrices in Definition 1.3, we give a bound, in
Corollary 1.10, for the probability that a random draw of a
matrix with d 1s or ±1s in each column fails to satisfy the
lower bound of RIP-1 and hence fails to come from the class
of matrices given in Definition 1.3. In addition to Theorem
1.9, Corollary 1.10 follows from Theorem 1.6 and Corollary
1.7.

Corollary 1.10: Considering RIP-1, ifA is drawn from the
class of matrices in Definition 1.3 and anyk-sparse vectorx
with k, n,N and0 < ǫ < 1/2 fixed, then

Prob(‖Ax‖1 ≤ (1 − 2ǫ)d‖x‖1) < p′max(N, k, d)

× exp [N ·Ψnet (k, n,N ; d, ǫ)] (9)

wherep′max(N, k, d) andΨnet are given by

p′max(N, k, d) =
1

16πk
√
d3
(
1− k

N

) , (10)

Ψnet (k, n,N ; d, ǫ) = H

(
k

N

)
+
n

N
Ψ(k, d, ǫ) , (11)

with Ψ(k, d, ǫ) defined in Corollary 1.7.
Furthermore, the following corollary is a consequence of

Corollary 1.10 and it is a sampling theorem on the existence
of lossless expander graphs. The proof of Corollaries 1.10 and
1.11 are presented in Sections IV-B2 and IV-B3 respectively.

Corollary 1.11: Consider0 < ǫ < 1/2 andd fixed. If A is
drawn from the class of matrices in Definition 1.3 and anyx
drawn fromχN with (k, n,N) → ∞ while k/n→ ρ ∈ (0, 1)
andn/N → δ ∈ (0, 1) then forρ < (1 − γ)ρexp(δ; d, ǫ) and
γ > 0

Prob(‖Ax‖1 ≥ (1 − 2ǫ)d‖x‖1) → 1 (12)

exponentially inn, whereρexp(δ; d, ǫ) is the largest limiting
value ofk/n for which

H

(
k

N

)
+
n

N
Ψ(k, d, ǫ) = 0. (13)

The outline of the rest of the manuscript is as follows: In
Section II we show empirical data to validate our main results
and also present lemmas (and their proofs) that are key to the
proof of the main theorem, Theorem 1.6. In Section III we
discuss restricted isometry constants and compressed sensing
algorithms. In Section IV we prove the mains results, that
is Theorem 1.6 and the corollaries in Sections I-A and I-B.
Section V is the appendix where we present the alternative to
Theorem 1.6.

II. D ISCUSSION AND DERIVATION OF THE MAIN RESULTS

We present the method used to derive the main results and
discuss the validity and implications of the method. We start
by presenting in the next subsection, Section II-A, numerical
results that support the claims of the main results in Sections
I-A and I-B. This is followed in Section II with lemmas,
propositions and corollaries and their proofs.
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A. Discussion on main results

Theorem 1.6 gives a bound on the probability that the
cardinality of a union ofk sets each withd elements is less
thanak. Figure 2 shows plots of values ofak (size of set of
neighbors) for differentk taken over 500 realizations (in blue),
superimposed on these plots is the mean value ofak (in red)
and theâk in green. Similarly, Figure 3 also shows values of
ak/k (the graph expansion) also taken over 500 realizations.

0 0.1 0.2 0.3 0.4 0.5
0

200

400

600

800

1000

1200

k/n

a
k

d =8, n =1024 and k = 2,3,4, ...,512

Fig. 2. For fixedd = 8 andn = 210, over500 realizations we plot (in blue)
the cardinalities of the index sets of nonzeros in a given number of set sizes,
k. The dotted red curve is mean of the simulations and the greensquares are
the âk .
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1

2

3

4

5

6

7

8

k/n

a
k
/
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d =8, n =1024 and k = 2,3,4, ...,512

Fig. 3. For fixedd = 8 and n = 210 , over 500 realizations we plot (in
blue) the graph expansion for a given input set sizek. The dotted red curve
is mean of the simulations and the green squares are theâk/k.

Theorem 1.6 also claims that theâs are the expected values
of the cardinalities of the union ofs sets. We given a brief
proof sketch of its proof in Section II-B in terms of the
maximum likelihood and empirical illustrate the accuracy of
the result in Figure 4 where we show the relative error between
âk and the mean values of theak, āk, realized over500 runs,
to be less than10−3.

Figure 5 shows representative values ofai from (5) for
ak := (1 − ǫ)âk as a function ofǫ for d = 8, k = 2 × 103,
and n = 220. Each of theai decrease smoothly towardsd,

0 0.1 0.2 0.3 0.4 0.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

k/n

|ā
k
−

â
k
|

ā
k

d =8, n =1024 and k = 2,4,8, ...,512

Fig. 4. For fixedd = 8 and n = 210 , over 500 realizations the relative
error between the mean values ofak (referred to as̄ak) and theâk from
Equation (4) of Theorem 1.6.

but with ai for smaller values ifi varying less than for larger
values ofi.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2000

4000

6000

8000

10000

12000

14000

16000

ǫ

a
i

Fig. 5. Values ofaias a function ofǫ ∈ [0, 1) for ak := (1 − ǫ)âk
with d = 8, k = 2 × 103 and n = 220. For this choice ofd, k, n
there are twelve levels of dyadic splits resulting inai for i = 2j for
j = 0, . . . , ⌈log2 k⌉ = 12. The highest curve corresponds toai for i = 212,
the next highest curve corresponds toi = 211 , and continuing in decreasing
magnitude with decreasing subscript values.

For fixed0 < ǫ < 1/2 and for small but fixedd, ρexp(δ; d, ǫ)
in Corollary 1.11 is a function ofδ for each d and ǫ, is
a phase transition function in the(δ, ρ) plane. Below the
curve of ρexp(δ; d, ǫ) the probability in (12) goes to one
exponentially inn as the problem size grows. That is ifA
is drawn at random withd 1s or d ± 1s in each column
and having parameters(k, n,N) that fall below the curve of
ρexp(δ; d, ǫ) then we say it is from the class of matrices in
Definition 1.3 with probability approaching one exponentially
in n. In terms of|Γ(X)| for X ⊂ U and |X | ≤ k, Corollary
1.11 say that the probability|Γ(X)| ≥ (1 − ǫ)dk goes to
one exponentially inn if the parameters of our graph lies
in the region belowρexp(δ; d, ǫ). This implies that if we
draw a random bipartite graphs that has parameters in the
region below the curve ofρexp(δ; d, ǫ) then with probability
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approaching one exponentially inn that graph is a lossless
(k, d, ǫ)-expander. Figure 6 shows a plot of whatρexp(δ; d, ǫ)

0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

n/N

k
/
n

d =8, ǫ =0.25

 

 

n =256
n =1024
n =4096

Fig. 6. Phase transition plots ofρexp(δ; d, ǫ) for fixed d = 8 and ǫ = 1/4
with n varied.

converge to for different values ofn with ǫ and d fixed;
Figure 7 shows a plot of whatρexp(δ; d, ǫ) converge to for
different values ofd with ǫ andn fixed; while Figure 8 shows
plots of whatρexp(δ; d, ǫ) converge to for different values of
ǫ with n andd fixed. It is interesting to note how increasingd
increases the phase transition up to a point then it decreases the
phase transition. Essentially beyondd = 16 there is no gain
in increasingd. This vindicates the use of smalld in most
of the numerical simulations involving the class of matrices
considered here. Note the vanishing sparsity as the problem
size (k, n,N) grows while d is fixed to a small value of
8. In their GPU implementation [8] Blanchard and Tanner
observed that SSE withd = 7 has a phase transition for
numerous sparse approximation algorithms that is consistent
with dense Gaussian matrices, but with dramatically faster
implementation.

0 0.2 0.4 0.6 0.8 1
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d =8
d =12
d =16
d =20

Fig. 7. Phase transition plots ofρexp(δ; d, ǫ) for fixed ǫ = 1/6 andn = 210

with d varied.

As afore-stated Corollary 1.11 follows from Theorem 1.6,
alternatively Corollary 1.11 can be arrived at based on proba-
bilistic constructions of expander graphs given by Proposition

2.1 below. This proposition and its proof can be traced back
to Pinsker in [25] but more recent proofs can be found in [6],
[10].

Proposition 2.1:For anyN/2 ≥ k ≥ 1, ǫ > 0 there exists
a lossless(k, d, ǫ)-expander with

d = O (log (N/k) /ǫ) and n = O
(
k log (N/k) /ǫ2

)
.
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ǫ =0.0625
ǫ =0.16667
ǫ =0.25

Fig. 8. Phase transition plots ofρexp(δ; d, ǫ) for fixed d = 8 andn = 210

with ǫ varied.

To put our results in perspective, we compare them to the
alternative construction in [6] which led to Corollary 2.2,
whose proof is given in Section V-A of the Appendix. Figure 9
compares the phase transitions resulting from our construction
to that presented in [6], but we must point out however, that
the proof in [6] was not aimed for a tight bound.
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ρexp(δ; d, ǫ)

ρexp
bi (δ; d, ǫ)

Fig. 9. A comparison ofρexp in Theorem 1.6 toρexp
bi

of Corollary 2.2
derived using the construction based on Corollary 2.2.

Corollary 2.2: Consider a bipartite graphG(U, V,E) with
left vertices|U | = N , right vertices|V | = n and left degreed.
Fix 0 < ǫ < 1/2 andd, as(k, n,N) → ∞ while k/n→ ρ ∈
(0, 1) andn/N → δ ∈ (0, 1) then forρ < (1−γ)ρexpbi (δ; d, ǫ)
andγ > 0

Prob(G fails to be an expander) → 0 (14)
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exponentially inn, whereρexpbi (δ; d, ǫ) is the largest limiting
value ofk/n for which

Ψ(k, n,N ; d, ǫ) = 0 (15)

with Ψ(k, n,N ; d, ǫ) = H

(
k

N

)
+
dk

N
H (ǫ)+

ǫdk

N
log

(
dk

n

)
.

B. Key Lemmas

The following set of lemmas, propositions and corollaries
form the building blocks of the proof of our main results to
be presented in Section IV.

For one fixed set of columns ofA, denotedAS , the
probability in (1) can be understood as the cardinality of
the unions of nonzeros in the columns. Our analysis of this
probability follows from a nested unions of subsets using a
dyadic splitting technique. Given a starting set of columns
we recursively split the number of columns from this set and
the resulting sets into two sets of cardinality of the ceiling
and floor of the cardinality of their union until a level when
the cardinalities are at most two. Resulting from this type
of splitting is a binary tree where the size of each child is
either the ceiling or the floor of the size of it’s parent set. The
probability of interest becomes a product of the probabilities
involving all the children from the dyadic splitting ofAs.

The computation of the probability in (1) involves the com-
putation of the probability of the cardinality of the intersection
of two sets. This probability is given by Lemma 2.3 and
Corollary 2.4 below.

Lemma 2.3:LetB, B1, B2 ⊂ [n] where|B1| = b1, |B2| =
b2, B = B1 ∪B2 and |B| = b. Also letB1 andB2 be drawn
uniformly at random, independent of each other, and define
Pn (b, b1, b2) := Prob(|B1 ∩B2| = b1 + b2 − b), then

Pn (b, b1, b2) =

(
b1

b1 + b2 − b

)(
n− b1
b− b1

)(
n

b2

)−1

. (16)

Proof: Given B1, B2 ⊂ [n] where |B1| = b1 and
|B2| = b2 are drawn uniformly at random, independent of each
other, we calculate Prob(|B1 ∩B2| = z) wherez = b1+b2−b.
Without loss of generality consider drawingB1 first, then
the probability that the draw ofB2 intersectingB1 will have
cardinalityz, i.e. Prob(|B1 ∩B2| = z), is the size of the event
of drawingB2 intersectingB1 by z divided by the size of
the sample space of drawingB2 from [n], which are given
by
(
b1
z

)
·
(
n−b1
b2−z

)
and

(
n
b2

)
respectively. Rewriting the division

as a product with the divisor raised to a negative power and
replacingz by b1 + b2 − b gives (16).

Corollary 2.4: If two sets,B1, B2 ⊂ [n] are drawn uni-
formly at random, independent of each other, andB = B1∪B2

Prob(|B| = b) = Pn (b, b1, b2)×
Prob(|B1| = b1) · Prob(|B2| = b2) (17)

Proof: Prob(|B| = b) = Prob(|B1 ∪B2| = b) by defini-
tion. As a consequence of the inclusion-exclusion principle

Prob(|B1 ∪B2| = b) = Prob(|B1 ∩B2| = b1 + b2 − b)

× Prob(|B1| = b1) · Prob(|B2| = b2) . (18)

We use Lemma 2.3 to replace Prob(|B1 ∩B2| = b1 + b2 − b)
in (18) by Pn (b, b1, b2) leading to the required result.

In the binary tree resulting from our dyadic splitting scheme
the number of columns in the two children of a parent
node is the ceiling and the floor of half of the number of
columns of the parent node. At each level of the split the
number of columns of the children of that level differ by
one. The enumeration of these two quantities at each level
of the splitting process is necessary in the computation of the
probability of (1). We state and prove what we refer to adyadic
splitting lemma, Lemma 2.5, which we later use to enumerate
these two quantities - the sizes (number of columns) of the
children and the number of children with a given size at each
level of the split.

Lemma 2.5:Let S be an index set of cardinalitys. For any
level j of the dyadic splitting,j = 0, . . . , ⌈log2 s⌉ − 1, the
setS is decomposed into disjoint sets each having cardinality
Qj =

⌈
s
2j

⌉
or Rj = Qj − 1. Let qj sets have cardinalityQj

andrj sets have cardinalityRj , then

qj = s− 2j ·
⌈ s
2j

⌉
+ 2j , and rj = 2j − qj . (19)

Proof: At every node on the binary tree the children have
either of two sizes (number of columns) of the floor and ceiling
of half the sizes of there parents and these sizes differ at most
by 1, that is at levelj of the splitting we have at most 2
different sizes. We define these sizes,Qj andRj , in terms of
two arbitrary integers,m1 andm2, as follows.

Qj =
s

2j
+
m1

2j
and Rj =

s

2j
+
m2

2j
. (20)

Because of the nature of our splitting scheme we haveRj =
Qj−1 which implies thatm1 andm2 must satisfy the relation

m1 −m2

2j
= 1. (21)

Now let qj andrj be the number of children withQj andRj
number of columns respectively. Therefore,

qj + rj = 2j . (22)

At each levelj of the splitting the following condition must
be satisfied

qj ·Qj + rj · Rj = s. (23)

To find m1, m2, qj and rj , from (20) we substitute forQj
andRj in (23) to have

qj ·
( s
2j

+
m1

2j

)
+ rj ·

( s
2j

+
m2

2j

)
= s, (24)

2−jqjs+ 2−jqjm1 + 2−jrjs+ 2−jrjm2 = s, (25)

2−j (qj + rj) s+ 2−j (qjm1 + rjm2) = s, (26)

s+ 2−j (qjm1 + rjm2) = s, (27)

qjm1 + rjm2 = 0. (28)

We expanded the brackets from (24) to (25) and simplified
from (25) to (26). We simplify the first term of (26) using
(22) to get (27) and we simplified this to get (28).

Equation (21) yields

m1 = m2 + 2j . (29)
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Substituting this in (28) yields

qj
(
m2 + 2j

)
+ rjm2 = 0, (30)

(qj + rj)m2 + 2jqj = 0, (31)

2j (qj +m2) = 0. (32)

From (30) to (31) we expanded the brackets and rearranged
the terms and used (22) to simplify to (32). Using (32) and
(29) respectively we have

m2 = −qj and m1 = 2j − qj = rj . (33)

Substituting this in (20) we have

Qj =
s− qj
2j

+ 1 and Rj =
s− qj
2j

. (34)

Equating this value ofQj to its defined value in the statement
of the lemma gives

s− qj
2j

+ 1 =
⌈ s
2j

⌉
⇒ qj = s− 2j ·

⌈ s
2j

⌉
+ 2j . (35)

Therefore, from (33) we use (35) to have

rj = 2j − qj ⇒ rj = 2j ·
⌈ s
2j

⌉
− s, (36)

which concludes the proof.
The bound in (1) is derived using a large deviation analysis

of the nested probabilities which follow from the dyadic split-
ting in Corollary 2.4. The large deviation analysis of (16) at
each stage involves its large deviation exponentψn(·), which
follows from Stirling’s inequality bounds on the combinatorial
product of (16). Lemma 2.6 establishes a few properties of
ψn(·) while Lemma 2.7 shows how the variousψn(·)’s at a
given dyadic splitting level can be combined into a relatively
simple expression.

Lemma 2.6:Define

ψn(x, y, z) := y · H

(
x− z

y

)
+ (n− y) · H

(
x− y

n− y

)

− n · H
( z
n

)
, (37)

then forn > x > y we have that

for y > z ψn(x, y, y) ≤ ψn(x, y, z) ≤ ψn(x, z, z); (38)

for x > z ψn(x, y, y) > ψn(z, y, y); (39)

for 1/2 < α ≤ 1 ψn(x, y, y) < ψn(αx, αy, αy). (40)

Proof: We start with Property (38) and first show that the
left inequality holds. If we substitutey for z in (37) withy > z
we reduce the first and last terms of (37) while we increase the
middle term of (37) which makesψn(x, y, y) ≤ ψn(x, y, z).
For second inequality we replacey by z in (37) with y > z
we increase the first and the last terms of (37) and reduce
the middle term which makesψn(x, y, z) ≤ ψn(x, z, z). This
concludes the proof for (38).

Property (39) states that for fixedy, ψn(x, y, y) is mono-
tonically increasing in its first argument. To prove (39) we
use the conditionn > x > y to ensure that H(p) increases
monotonically with p, which implies that the first and last
terms of (37) increase withx for fixed y while the second
term remains constant.

Property (40) means thatψn(x, y, y) is monotonically de-
creasing inx andy. For the proof we show that for1/2 < α ≤
1 the differenceψn(αx, αy, αy)−ψn(x, y, y) > 0. Using (37)
we write out clearly what the difference,ψn(αx, αy, αy) −
ψn(x, y, y), is as follows.

αyH

(
αx − αy

αy

)
+ (n− αy)H

(
αx− αy

n− αy

)
− nH

(αy
n

)

− yH

(
x− y

y

)
− (n− y)H

(
x− y

n− y

)
+ nH

( y
n

)
(41)

= αyH

(
x− y

y

)
+ nH

(
αx− αy

n− αy

)
− αyH

(
αx− αy

n− αy

)

− nH
(αy
n

)
− yH

(
x− y

y

)
− nH

(
x− y

n− y

)

+ yH

(
x− y

n− y

)
+ nH

( y
n

)
(42)

= αyH

(
x− y

y

)
− αyH

(
αx− αy

n− αy

)
− yH

(
x− y

y

)

+ yH

(
x− y

n− y

)
+ nH

( y
n

)
− nH

(αy
n

)

+ nH

(
αx− αy

n− αy

)
− nH

(
x− y

n− y

)
(43)

From (41) to (42) we expanded brackets and simplified, while
from (42) to (43) we rearranged the terms for easy comparison.

Again n > x > y ensures that the arguments of H(·) are
strictly less than half and H(p) increases monotonically with
p. In (43) the difference of the first two terms in the first row
is positive while the difference of the second two terms is
negative. However, the whole sum of the first four terms is
negative but very close to zero whenα is close to one which
is the regime that we will be considering. The difference of
the last two terms in the second row is positive while the
difference of the terms on bottom row is negative but due to
the concavity and steepness of the Shannon entropy function
the first positive difference is larger hence the sum of last four
terms is positive. Since we can writen = cy with c > 1 being
an arbitrarily constant, then the positive sum in the second
four terms dominates the negative sum in the first four terms.
This gives the required results and hence concludes this proof
and the proof of Lemma 2.6.

Lemma 2.7:Given ψn(·) as defined in (37) then the fol-
lowing bound holds.

⌈log2(s)⌉−2∑

j=0

[
qj · ψn

(
aQj

, a⌈Qj
2

⌉, a⌊Qj
2

⌋
)

+

rj · ψn
(
aRj

, a⌈Rj
2

⌉, a⌊Rj
2

⌋
)]

+ q⌈log2(s)⌉−1 · ψn (a2, d, d)

≤
⌈log2(s)⌉−1∑

j=0

2j · ψn
(
aQj

, a⌊Rj
2

⌋, a⌊Rj
2

⌋
)
, (44)

whereaR⌈log2(s)⌉−1
2

= d.

Proof: The quantity inside the left hand side summation
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in (44), i.e.

qj · ψn
(
aQj

, a⌈Qj
2

⌉, a⌊Qj
2

⌋
)

+ rj · ψn
(
aRj

, a⌈Rj
2

⌉, a⌊Rj
2

⌋
)
, (45)

is equal to the following if we replaceqj andrj by their values
given in Lemma 2.5.

(
s− 2j

⌈ s
2j

⌉
+ 2j

)
· ψn

(
aQj

, a⌈Qj
2

⌉, a⌊Qj
2

⌋
)

(46)

+
(
2j
⌈ s
2j

⌉
− s
)
· ψn

(
aRj

, a⌈Rj
2

⌉, a⌊Rj
2

⌋
)

<
(
s− 2j

⌈ s
2j

⌉
+ 2j

)
· ψn

(
aQj

, a⌊Qj
2

⌋, a⌊Qj
2

⌋
)

(47)

+
(
2j
⌈ s
2j

⌉
− s
)
· ψn

(
aRj

, a⌊Rj
2

⌋, a⌊Rj
2

⌋
)
.

<
(
s− 2j

⌈ s
2j

⌉
+ 2j

)
· ψn

(
aQj

, a⌊Rj
2

⌋, a⌊Rj
2

⌋
)

(48)

+
(
2j
⌈ s
2j

⌉
− s
)
· ψn

(
aRj

, a⌊Rj
2

⌋, a⌊Rj
2

⌋
)
.

<
(
s− 2j

⌈ s
2j

⌉
+ 2j

)
· ψn

(
aQj

, a⌊Rj
2

⌋, a⌊Rj
2

⌋
)

(49)

+
(
2j
⌈ s
2j

⌉
− s
)
· ψn

(
aQj

, a⌊Rj
2

⌋, a⌊Rj
2

⌋
)
.

= 2j · ψn
(
aQj

, a⌊Rj
2

⌋, a⌊Rj
2

⌋
)
. (50)

From (46) to (47) we upper bounded

ψn

(
aQj

, a⌈Qj
2

⌉, a⌊Qj
2

⌋
)

by ψn

(
aQj

, a⌊Qj
2

⌋, a⌊Qj
2

⌋
)

and ψn

(
aRj

, a⌈Rj
2

⌉, a⌊Rj
2

⌋
)

by ψn

(
aRj

, a⌊Rj
2

⌋, a⌊Rj
2

⌋
)

using (38) of Lemma 2.6. We then upper bounded

ψn

(
aQj

, a⌊Qj
2

⌋, a⌊Qj
2

⌋
)

by ψn

(
aQj

, a⌊Rj
2

⌋, a⌊Rj
2

⌋
)

,

from (47) to (48), again using (38) of Lemma 2.6. From
(48) to (49), using (39) of Lemma 2.6, we bounded

ψn

(
aRj

, a⌊Rj
2

⌋, a⌊Rj
2

⌋
)

by ψn

(
aQj

, a⌊Rj
2

⌋, a⌊Rj
2

⌋
)

.

For the final step from (49) to (50) we factored out

ψn

(
aQj

, a⌊Rj
2

⌋, a⌊Rj
2

⌋
)

and then simplified.

Using q⌈log2(s)⌉−1 + r⌈log2(s)⌉−1 = 2⌈log2(s)⌉−1 we bound
q⌈log2(s)⌉−1 by 2⌈log2(s)⌉−1. Then we add this to the summa-
tion of (49) forj = 0, . . . , ⌈log2(s)⌉−2 establishing the bound
of Lemma 2.7.

Now we state and prove a lemma about the quantitiesai.
During the proof we will make a statement about theai
using their expected valueŝai which follows from a maximum
likelihood analogy.

Lemma 2.8:The problem

max
as,...,a2

⌈s/2⌉∑

i=1

s

2i
· ψn (a2i, ai, ai) (51)

has a global maximum and the maximum occurs at the

expected values of theai, âi given by

â2i = âi

(
2− âi

n

)
for i = 1, 2, 4, . . . , ⌈s/2⌉, (52)

which are a solution of the following polynomial system.

a2⌈s/2⌉ − 2na⌈s/2⌉ + nas = 0,

a32i − 2aia
2
2i + 2a2i a2i − a2i a4i = 0,

for i = 1, 2, . . . , ⌈s/4⌉, (53)

wherea1 = d. If as is constrained to be less than̂as, then
there is a different global maximum, instead theai satisfy the
following system

a32i − 2aia
2
2i + 2a2i a2i − a2i a4i = 0,

for i = 1, 2, 4, . . . , ⌈s/4⌉, (54)

again witha1 = d.
Proof: Define

Ψ̃n (as, . . . , a2, d) :=

⌈s/2⌉∑

i=1

s

2i
· ψn (a2i, ai, ai) . (55)

Using the definition ofψn(·) in (37) we therefore have

Ψ̃n (as, . . . , a2, d) =

⌈s/2⌉∑

i=1

s

2i
·
[
ai · H

(
a2i − ai
ai

)
+

(n− ai) · H

(
a2i − ai
n− ai

)
− n · H

(ai
n

)]
. (56)

The gradient ofΨ̃n (as, . . . , a2, d) , ∇Ψ̃n (as, . . . , a2, d) is
given by
(
log

[(
2a⌈s/2⌉ − as

)
(n− as)

(
as − a⌈s/2⌉

)2

]
,

s

2i
· log

[
a2i (a4i − a2i) (2ai − a2i)

(2a2i − a4i) (a2i − ai)
2

])T

for i = 1, 2, 4, . . . , ⌈s/4⌉, (57)

where vT is the transpose of the vectorv. Obtaining the
critical points by solving∇Ψ̃n (as, . . . , a2, d) = 0 leads to
the polynomial system (53).

The Hessian,∇2Ψ̃n (as, . . . , a2, d) at these optimalai
which are the solutions to the polynomial system (53) is
negative definite which implies that this unique critical point
is a global maximum point. Let the solution of the system
be theâi then they satisfy a recurrence formula (52) which
is equivalent to their expected values as explained in the
paragraph that follows.

We estimate the uniformly distributed parameter relatinga2i
to ai. The best estimator of this parameter is the maximum
likelihood estimator which we calculate from the maximum
log-likelihood estimator (MLE). The summation of theψn(·)
is the logarithm of the join density functions for thea2i.
The MLE is obtained by maximizing this summation and
it corresponds to the expected log-likelihood. Therefore,the
parameters given implicitly by (52) are the expected log-
likelihood which implies that the values of thêaj in (52) are
the expected values of theai.
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If we restrict as to take a fixed value, then
∇Ψ̃n (as, . . . , a2, d) is given by

(
s

2i
· log

[
a2i (a4i − a2i) (2ai − a2i)

(2a2i − a4i) (a2i − ai)
2

])T

for i = 1, 2, 4, . . . , ⌈s/4⌉. (58)

Obtaining the critical points by solving∇Ψ̃n (as, . . . , a2, d) =
0 leads to the polynomial system (54).

Given as, the Hessian,∇2Ψ̃n (as, . . . , a2, d) at these op-
timal ai which are the solutions to the polynomial system
(54) is negative definite which implies that this unique critical
point is a global maximum; this case differs from a maximum
likelihood estimation because of the extra constraint of fixing
as.

The dyadic splitting technique we employ requires greater
care of the polynomial term in the large deviation bound of
Pn (x, y, z) in (16); Lemma 2.10 establishes the polynomial
term.

Definition 2.9: Pn (x, y, z) defined in (16) satisfies the up-
per bound

Pn (x, y, z) ≤ π (x, y, z) exp(ψn(x, y, z)) (59)

with bounds ofπ (x, y, z) given in Lemma 2.10.
Lemma 2.10:For π (x, y, z) and Pn (x, y, z) given by (59)

and (16) respectively, if{y, z} < x < y + z, π (x, y, z) is
given by
(
5

4

)4 [
yz(n− y)(n− z)

2πn(y + z − x)(x − y)(x− z)(n− x)

] 1
2

, (60)

otherwiseπ (x, y, z) has the following cases.
(
5

4

)3 [
y(n− z)

n(y − z)

] 1
2

if x = y > z; (61)

(
5

4

)3 [
(n− y)(n− z)

n(n− y − z)

] 1
2

if x = y + z; (62)

(
5

4

)2 [
2πz(n− z)

n

] 1
2

if x = y = z. (63)

Proof: The Stirling’s inequality below would be used in
this proof and other proofs to follow.

16

25
(2πp(1− p)N)−

1
2 eNH(p) ≤

(
N

Np

)

≤ 5

4
(2πp(1− p)N)

− 1
2 eNH(p), (64)

whereH(p) = −p log(p)− (1− p) log(1− p) is the Shannon
entropy function for basee logarithms.

From Definition 2.9 the quantityπ (x, y, z) is the polyno-
mial portion of the large deviation upper bound. Within this
proof we express this by

π (x, y, z) = poly

[(
y

y + z − x

)(
n− y

x− y

)(
n

z

)−1
]
. (65)

We derive the upper boundπ (x, y, z) using the Stirling’s
inequality. The right inequality of (64) is used to upper bound

(
y

y+z−x
)

and
(
n−y
x−y
)

and the left inequality of (64) is used to
lower bound

(
n
z

)
. If {y, z} < x < y + z the bound is well

defined and simplifies to (60).
If x = y > z (60) is undefined; however, substitutingy for

x in (65) gives
(

y
y+z−x

)
=
(
y
z

)
and

(
n−y
x−y
)
=
(
n−y
0

)
= 1. We

upper bound the product
(
y
z

)(
n
z

)−1
using the right inequality

in (64) to bound
(
y
z

)
from above and the left inequality in

(64) to bound from below
(
n
z

)
. The resulting polynomial part

of the product simplifies to (61).
If x = y + z, then

(
y

y+z−x
)
=
(
y
0

)
= 1 and

(
n−y
x−y
)
=(

n−y
z

)
. As above, we upper bound the product of

(
n−y
x−y
)

and
(
n
z

)−1
using (64) and simplify the polynomial part of this

product to get (62). If insteadx = y = z, then
(

y
y+z−x

)
=
(
y
0

)

and
(
n−y
x−y
)
=
(
n−y
0

)
both of which equal 1. Therefore the

bound only involves
(
n
z

)−1
which we bound using (64) and

the resulting polynomial part simplifies to (63).
Corollary 2.11: If n > 2y, thenπ(y, y, y) is monotonically

increasing iny.
Proof: If n > 2y, (63) implies thatπ(y, y, y) is propor-

tional to
√
y, i.e. π(y, y, y) = c

√
y, with c > 0 and c

√
y is

monotonic iny.

III. R ESTRICTED ISOMETRY CONSTANTS AND

COMPRESSEDSENSING ALGORITHMS

Here we introduceRIC2 and briefly discuss the implications
of RIC1 andRIC2 to compressed sensing algorithms in Sec-
tion III-A. In Section III-B we present the first ever quantitative
comparison of the performance guarantees of some of the
compressed sensing algorithms proposed for sparse matrices
as stated in Definition 1.3.

A. Restricted isometry constants

It is possible to include noise in the Compressed Sensing
model, for instancey = Ax + e where e is a noise vector
capturing the model misfit or the non-sparsity of the signalx.
The ℓ0-minimization problem (7) in the noise case setting is

min
x∈χN

‖x‖0 subject to ‖Ax− y‖2 < ‖e‖2, (66)

where‖e‖2 is the magnitude of the noise.
Problems (7) and (66) are in general NP-hard and hence

intractable. To benefit from the rich literature of algorithms
available in both convex and non-convex optimization the
ℓ0-minimization problem is relaxed to anℓp-minimization
one for 0 < p ≤ 1. It is well known that theℓp norm
for 0 < p ≤ 1 are sparsifying norms, see [19], [21]. In
addition, there are specifically designed classes of algorithms
that take on theℓ0 problem and they have been referred to
as greedy algorithms. When using dense sensing matrices,A,
popular greedy algorithms include Normalized Iterative Hard
Thresholding (NIHT), [26], Compressive Sampling Matching
Pursuits (CoSAMP), [22], and Subspace Pursuit (SP), [20].
When A is sparse and non-mean zero, a different set of
combinatorialgreedy algorithms have been proposed which
iteratively locates and eliminate large (in magnitude) com-
ponents of the vector, [5]. They include Expander Matching
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Pursuit (EMP), [27], Sparse Matching Pursuit (SMP), [28],
Sequential Sparse Matching Pursuit (SSMP), [29], Left Degree
Dependent Signal Recovery (LDDSR), [24], and Expander
Recovery (ER), [23], [7].

The convergence analysis of nearly all of these algorithms
rely heavily on restricted isometry constants (RIC). As we saw
earlier RICs measures how near isometryA is when applied to
k-sparse vectors in some norm. For theℓ1 norm, also known
as the Manhattan norm,RIC1 is stated in (8). The restricted
Euclidian norm isometry, introduced by Candès in [30], is
denoted byRIC2 and is defined in Definition 3.1.

Definition 3.1 (RIC2): Define χN to be the set of all
k−sparse vectors and draw ann×N matrixA, then for allx ∈
χN , A hasRIC2, with lower and upperRIC2, L(k, n,N ;A)
andU(k, n,N ;A) respectively, when the following holds.

(1− L(k, n,N ;A)) ‖x‖2 ≤ ‖Ax‖2
≤ (1 + U(k, n,N ;A)) ‖x‖2.

The computation ofRIC1 for adjacency matrices of lossless
(k, d, ǫ)-expander graphs is equivalent to calculatingǫ. The
computation ofRIC2 is intractable except for trivially small
problem sizes(k, n,N) because it involves doing a combinato-
rial search over all

(
N
k

)
column submatrices ofA. As a results

attempts have been made to deriveRIC2 bounds. Some of
these attempts have been successful in derivingRIC2 bounds
for the Gaussian ensemble and these bounds have evolved from
the first by Candès and Tao in [19], improved by Blanchard,
Cartis and Tanner in [31] and further improved by Bah and
Tanner in [32].
RIC2 bounds have been used to derive sampling theorems

for compressed sensing algorithms -ℓ1-minimization and the
greedy algorithms for dense matrices, NIHT, CoSAMP, and
SP. Using the phase transition framework withRIC2 bounds
Blanchard et. al. compared performance of these algorithms
in [13]. In a similar vain, as another key contribution of this
paper we provide sampling theorems forℓ1-minimization and
combinatorial greedy algorithms, EMP, SMP, SSMP, LDDSR
and ER, proposed for SE and SSE matrices.

B. Algorithms and their performance guarantees

Theoretical guarantees have been given forℓ1 recovery
and other greedy algorithms including EMP, SMP, SSMP,
LDDSR and ER designed to do compressed sensing recovery
with adjacency matrices of lossless expander graphs and by
extension SSE matrices. Sparse matrices have been observed
to have recovery properties comparable to dense matrices
for ℓ1-minimization and some of the aforesaid algorithms,
see [5], [6], [23], [4], [24] and the references therein. Base
on theoretical guarantees, we derived sampling theorems and
present here phase transition curves which are plots of phase
transition functionsρalg(δ; d, ǫ) of algorithms such that for
k/n → ρ < (1 − γ)ρalg(δ; d, ǫ), γ > 0, a given algorithm is
guaranteed to recovery allk-sparse signals with overwhelming
probability approaching one exponentially inn.

1) ℓ1-minimization: Note that ℓ1-minimization is not an
algorithm per se, but can be solved using Linear Program-
ming (LP) algorithms. Berinde et. al. showed in [5] thatℓ1-
minimization can be used to perform signal recovery with bi-
nary matrices coming from expander graphs. We reproduce the
formal statement of this guarantee in the following theorem,
the proof of which can be found in [5], [6].

Theorem 3.2 (Theorem 3, [5], Theorem 1, [6]):Let A be
an adjacency matrix of a lossless(k, d, ǫ)-expander graph with
α(ǫ) = 2ǫ/(1− 2ǫ) < 1/2. Given any two vectorsx, x̂ such
that Ax = Ax̂, and ||x̂||1 ≤ ||x||1, let xk be the largest (in
magnitude) coefficients ofx, then

||x− x̂||1 ≤ 2

1− 2α(ǫ)
||x− xk||1. (67)

The condition thatα(ǫ) = 2ǫ/(1 − 2ǫ) < 1/2 implies the
sampling theorem stated as Corollary 3.3, that when satisfied
ensures a positive upper bound in (67). The resulting sampling
theorem is given byρℓ1(δ; d, ǫ) usingǫ = 1/6 from Corollary
3.3.

Corollary 3.3 ([5]): ℓ1-minimization is guaranteed to re-
cover anyk-sparse vector from its linear measurement by an
adjacency matrix of a lossless(k, d, ǫ)-expander graph with
ǫ < 1/6.

Proof: Setting the denominator of the fraction in the right
hand side of (67) to be greater than zero gives the required
results.

2) Sequential Sparse Matching Pursuit (SSMP):Introduced
by Indyk and Ruzic in [29], SSMP has evolved as an im-
provement of Sparse Matching Pursuit (SMP) which was an
improvement on Expander Matching Pursuit (EMP). EMP also
introduced by Indyk and Ruzic in [27] uses a voting-like mech-
anism to identify and eliminate large (in magnitude) compo-
nents of signal. EMP’s drawback is that theempiricalnumber
of measurements it requires to achieve correct recovery is
suboptimal. SMP, introduced by Berinde, Indyk and Ruzic in
[28], improved on the drawback of EMP. However, it’s original
version had convergence problems when the input parameters
(k and n) fall outside the theoretically guaranteed region.
This is fixed by the SMP package which forces convergence
when the user provides an additional convergence parameter.
In order to correct the aforementioned problems of EMP and
SMP, Indyk and Ruzic developed SSMP. It is a version of
SMP where updates are done sequentially instead of parallel,
consequently convergence is automatically achieved. All three
algorithms have the same theoretical recovery guarantees,
which we state in Theorem 3.4, but SSMP has better empirical
performances compared to it’s predecessors.

Algorithm 1 below is a pseudo-code of the SSMP algorithm
based on the following problem setting. The measurement
matrix A is an n × N adjacency matrix of a lossless((c +
1)k, d, ǫ/2)-expander scaled byd andA has a lowerRIC1,
L ((c+ 1)k, n,N) = ǫ. The measurement vectory = Ax+ e
wheree is a noise vector andη = ‖e‖1. We denote byHk(y)
the hard thresholding operator which sets to zero all but the
largest, in magnitude,k entries ofy.

The recovery guarantees for SSMP (also for EMP and
SMP) are formalized by the following theorem from which
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Algorithm 1 Sequential Sparse Matching Pursuit (SSMP) [29]
Input: A, y, η
Output: k-sparse approximation̂x of the target signalx
Initialization:
1. Set j = 0
2. Setxj = 0

Iteration: RepeatT = O (log (‖x‖1/η)) times
1. Set j = j + 1
2. Repeat(c− 1)k times
a) Find a coordinatei & an incrementz that

minimizes‖A (xj + zei)− y‖1
b) Setxj to xj + zei

3. Setxj = Hk (xj)
Return x̂ = xT

we deduce the recovery condition (sampling theorem) in terms
of ǫ in Corollary 3.5. Based on Corollary 3.5 deduced from
Theorem 3.4 we derived phase transition,ρSSMP (δ; d, ǫ), for
SSMP.

Theorem 3.4 (Theorem 10, [27]):Let A be an adjacency
matrix of a lossless(k, d, ǫ)-expander graph withǫ < 1/16.
Given a vectory = Ax+ e, the algorithm returns approxima-
tion vectorx̂ satisfying

||x− x̂||1 ≤ 1− 4ǫ

1− 16ǫ
||x− xk||1 +

6

(1− 16ǫ)d
||e||1, (68)

wherexk is thek largest (in magnitude) coordinates ofx.
Corollary 3.5 ([27]): SSMP, EMP, and SMP are all guar-

anteed to recover anyk-sparse vector from its linear measure-
ment by an adjacency matrix of a lossless(k, d, ǫ)-expander
graph withǫ < 1/16.

3) Expander Recovery (ER):Introduced by Jafarpour et.
al. in [23], [7], ER is an improvement on an earlier algorithm
introduced by Xu and Hassibi in [24] known as Left Degree
Dependent Signal Recovery (LDDSR). The improvement was
mainly on the number of iterations used by the algorithms
and the type of expanders used, from(k, d, 1/4)-expanders
for LDDSR to (k, d, ǫ)-expander for anyǫ < 1/4 for ER.
Both algorithms use this concept of agap defined below.

Definition 3.6 (gap, [24], [23], [7]): Let x be the original
signal andy = Ax. Furthermore, let̂x be our estimate forx.
For each valueyi we define a gapgi as:

gi = yi −
N∑

j=1

Aij x̂j . (69)

Algorithm 2 below is a pseudo-code of the ER algorithm
for an originalk-sparse signalx ∈ R

N and the measurements
y = Ax with an n×N measurement matrixA that is an
adjacency matrix of a lossless(2k, d, ǫ)-expander andǫ < 1/4.
The measurements are assumed to be without noise, so we aim
for exact recovery. The authors of [23], [7] have a modified
version of the algorithm for whenx is almostk-sparse.

Theorem 3.7 gives recovery guarantees for ER. Directly
from this theorem we read-off the recovery condition in terms
of ǫ for Corollary 3.8, from which we derive phase transition
functions,ρER(δ; d, ǫ), for ER.

Theorem 3.7 (Theorem 6, [7]):Let A ∈ R
n×N be the

adjacency matrix of a lossless(2k, d, ǫ)-expander graph, where
ǫ < 1/4 and n = O (k log(N/k)). Then, for anyk-sparse

Algorithm 2 Expander Recovery (ER) [23], [7]
Input: A, y
Output: k-sparse approximation̂x of the original signalx
Initialization:

1. Set x̂ = 0
Iteration: Repeat at most2k times

1. if y = Ax̂ then
2. return x̂ and exit
3. else
4. Find a variable nodêxj such that at least(1− 2ǫ)d of the

measurements it participated in, have identical gapg
5. Set x̂j = x̂j + g, and go to 2.
6. end if

signal x, given y = Ax, ER recoversx successfully in at
most2k iterations.

Corollary 3.8: ER is guaranteed to recover anyk-sparse
vector from its linear measurement by an adjacency matrix of
a lossless(k, d, ǫ)-expander graph withǫ < 1/4.
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ρSSMP (δ; d, ǫ = 1/16)

ρl1 (δ; d, ǫ = 1/6)

ρER(δ; d, ǫ = 1/4)

Fig. 10. Phase transition curvesρalg (δ; d, ǫ) computed over finite values
of δ ∈ (0, 1) with d fixed and the differentǫ values for each algorithm - 1/4,
1/6 and 1/16 for ER,ℓ1 and SSMP respectively.

4) Comparisons of phase transitions of algorithms:Figure
10 compares the phase transition plot ofρSSMP (δ; d, ǫ) for
SSMP (also for EMP and SMP), the phase transition of plot
ρER(δ; d, ǫ) for ER (also of LDDSR) and the phase transition
plot of ρℓ1(δ; d, ǫ) for ℓ1-minimization. Remarkably, for ER
and LDDSR recovery is guaranteed for a larger portion of
the (δ, ρ) plane than is guaranteed by the theory forℓ1-
minimization using sparse matrices; however,ℓ1-minimization
has a larger recovery region than does SSMP, EMP, and SMP.

Figure 11 shows a comparison of the phase transition of
ℓ1-minimization as presented by Blanchard et. al. in [13] for
dense Gaussian matrices based onRIC2 analysis and the
phase transition we derived here for the sparse binary matrices
coming from lossless expander based onRIC1 analysis. This
shows a remarkable difference between the two with sparse
matrices having better performance guarantees; this improve-
ment is achieved throughRIC1 being more closely related to
ℓ1-minimization than isRIC2.
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Fig. 11. Phase transition plots ofℓ1, ρℓ1
G

(δ), for Gaussian matrices derived
usingRIC2 andρℓ1

E
(δ; d, ǫ) for adjacency matrices of expander graphs with

n = 1024, d = 8, andǫ = 1/6.

IV. PROOF OF MAINS RESULTS

A. Proof of Theorem 1.6

By the dyadic splitting|As| =
∣∣∣A1

⌈ s
2 ⌉

∪ A2
⌊ s
2 ⌋

∣∣∣ and therefore

Prob(|As| ≤ as) = Prob
(∣∣∣A1

⌈ s
2 ⌉ ∪ A

2
⌊ s
2 ⌋

∣∣∣ ≤ as

)
(70)

=
∑

ls

∑

l⌈ s
2
⌉,l⌊ s

2
⌋

Prob
(∣∣∣A1

⌈ s
2 ⌉ ∪ A

2
⌊ s
2 ⌋

∣∣∣ = ls

)
(71)

=
∑

ls

∑

l1
⌈ s
2
⌉

∑

l2
⌊ s
2
⌋

Pn
(
ls, l

1
⌈ s
2 ⌉, l

2
⌊ s
2 ⌋

)
×

Prob
(∣∣∣A1

⌈ s
2 ⌉

∣∣∣ = l1⌈ s
2 ⌉

)
Prob

(∣∣∣A2
⌊ s
2 ⌋

∣∣∣ = l2⌊ s
2 ⌋

)
. (72)

From (70) to (71) we sum over all possible events while
from (71) to (72), in line with the splitting technique, we
simplify the probability to the product of the probabilities of
the cardinalities of

∣∣∣A1
⌈ s
2 ⌉

∣∣∣ and
∣∣∣A2

⌊ s
2 ⌋

∣∣∣ and their intersection.

In a slight abuse of notation we write
∑

lj j=1,...,x to denote
applying the sumx times. Now we use Lemma 2.5 to simplify
(72) as follows.

∑

l
j1
Q0

j1=1,...,q0

∑

l
j2
Q1

j2=1,...,q1

∑

l
j3
R1

j3=1,...,r1

Pn

(
lj1Q0

, l2j1−1

⌈Q0
2 ⌉

, l2j1
⌊Q0

2 ⌋

)

×
q1∏

j2=1

Prob
(∣∣∣Aj2Q1

∣∣∣ = lj2Q1

)

×
q1+r1∏

j3=q1+1

Prob
(∣∣∣Aj3R1

∣∣∣ = lj3R1

)
. (73)

Let’s quickly verify that (73) is the same as (72). By Lemma
2.5,Q0 = s is the number of columns in the set at the zeroth
level of the split whileq0 = 1 is the number of sets withQ0

columns at the zeroth level of the split. Thus forj1 = 1 the
first summation and the Pn(·) term are the same in the two
equations. If⌈Q0

2 ⌉ = ⌊Q0

2 ⌋, then they are both equal toQ1 and

q1 = 2 while r1 = 0. If on the other hand⌈Q0

2 ⌉ = ⌊Q0

2 ⌋+ 1,
thenq1 = 1 andr1 = 1. In either case we have the remaining
part of the expression of (72) i.e. the second two summations
and the product of the two Prob(·).

Now we proceed with the splitting - note (73) stopped only
at the first level. At the next level, the second, we will have
q2 sets withQ2 columns andr2 sets withR2 columns which
leads to the following expression.

∑

l
j1
Q0

j1=1,...,q0

∑

l
j2
Q1

j2=1,...,q1

∑

l
j3
R1

j3=1,...,r1

Pn

(
lj1Q0

, l2j1−1

⌈Q0
2 ⌉

, l2j1
⌊Q0

2 ⌋

)

×
[

∑

l
j4
Q2

j4=1,...,q2

∑

l
j5
R2

j5=1,...,r2

Pn

(
lj2Q1

, l2j2−1

⌈Q1
2 ⌉

, l2j2
⌊Q1

2 ⌋

)

Pn

(
lj3R1

, l2j3−1

⌈R1
2 ⌉

, l2j3
⌊R1

2 ⌋

)
×

q2∏

j4=1

Prob
(∣∣∣Aj4Q1

∣∣∣ = lj4Q1

)

q2+r2∏

j5=q2+1

Prob
(∣∣∣Aj5R1

∣∣∣ = lj5R1

)]
. (74)

We continue this splitting of each instance of Prob(·) for
⌈log2 s⌉ − 1 levels until reaching sets with single columns
where, by construction, the probability that the single column
has d nonzeros is one. This process gives a complicated
product of nested sums of Pn(·) which we express as

∑

l
j1
Q0

j1=1,...,q0

∑

l
j2
Q1

j2=1,...,q1

∑

l
j3
R1

j3=1,...,r1

Pn

(
lj1Q0

, l2j1−1

⌈Q0
2 ⌉

, l2j1
⌊Q0

2 ⌋

)

×
[

∑

l
j4
Q2

j4=1,...,q2

∑

l
j5
R2

j5=1,...,r2

Pn

(
lj2Q1

, l2j2−1

⌈Q1
2 ⌉

, l2j2
⌊Q1

2 ⌋

)

× Pn

(
lj3R1

, l2j3−1

⌈R1
2 ⌉

, l2j3
⌊R1

2 ⌋

)
·
[
. . .

[
∑

l
j2⌈log2 s⌉−2

Q⌈log2 s⌉−1

j2⌈log2 s⌉−2=1,...,qj⌈log2 s⌉−1

Pn
(
l
j2⌈log2 s⌉−4

4 , l
2j2⌈log2 s⌉−4−1

2 , l
2j2⌈log2 s⌉−4

2

)

× Pn
(
l
j2⌈log2 s⌉−3

3 , l
2j2⌈log2 s⌉−3−1

2 , d
)

× Pn
(
l
j2⌈log2 s⌉−2

2 , d, d
)]

. . .

]
. (75)

Using the definition of Pn(·) in Lemma 2.3 we bound
(75) by bounding each Pn(·) as in (59) with a product of
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a polynomial,π(·), and an exponential with exponentψn(·).
∑

l
j1
Q0

j1=1,...,q0

∑

l
j2
Q1

j2=1,...,q1

∑

l
j3
R1

j3=1,...,r1

π

(
lj1Q0

, l2j1−1

⌈Q0
2 ⌉

, l2j1
⌊Q0

2 ⌋

)
×

e
ψn

(

l
j1
Q0
,l
2j1−1

⌈
Q0
2

⌉
,l
2j1

⌊
Q0
2

⌋

)

·
[

∑

l
j4
Q2

j4=1,...,q2

∑

l
j5
R2

j5=1,...,r2

π

(
lj2Q1

, l2j2−1

⌈Q1
2 ⌉

, l2j2
⌊Q1

2 ⌋

)
· e
ψn

(

l
j2
Q1
,l
2j2−1

⌈
Q1
2

⌉
,l
2j2

⌊
Q1
2

⌋

)

×

π

(
lj3R1

, l2j3−1

⌈R1
2 ⌉

, l2j3
⌊R1

2 ⌋

)
· e
ψn

(

l
j3
R1
,l
2j3−1

⌈
R1
2

⌉
,l
2j3

⌊
R1
2

⌋

)

×
[
. . .×

[
∑

l
j2⌈log2 s⌉−2

Q⌈log2 s⌉−1

j2⌈log2 s⌉−2=1,...,qj⌈log2 s⌉−1

π
(
l
j2⌈log2 s⌉−4

4 , l
2j2⌈log2 s⌉−4−1

2 , l
2j2⌈log2 s⌉−4

2

)

× e
ψn

(

l
j2⌈log2 s⌉−4
4 ,l

2j2⌈log2 s⌉−4−1

2 ,l
2j2⌈log2 s⌉−4
2

)

× π
(
l
j2⌈log2 s⌉−3

3 , l
2j2⌈log2 s⌉−3−1

2 , d
)

× e
ψn

(

l
j2⌈log2 s⌉−3
3 ,l

2j2⌈log2 s⌉−3−1

2 ,d

)

×

π
(
l
j2⌈log2 s⌉−2

2 , d, d
)
· e
ψn

(

l
j2⌈log2 s⌉−2
2 ,d,d

)]
. . .

]
. (76)

Using Lemma 2.6 we maximize theψn(·) and hence the
exponentials. If we maximize each by choosingl(·) to bea(·),
then we can pull the exponentials out of the product. The
exponential will then have the exponentΨn (as, . . . , a2, d).
The factor involving theπ(·) will be called Π(ls, . . . , l2, d)
and we have the following upper bound for (76).

Π(ls, . . . , l2, d) · exp [Ψn (as, . . . , a2, d)] , (77)

where the exponentΨn (as, . . . , a2, d) is given by

ψn

(
aQ0 , a⌈Q0

2 ⌉, a⌊Q0
2 ⌋

)
+ . . .+ ψn (a2, d, d) . (78)

Now we attempt to bound the probability of interest in
(70). This task reduces to boundingΠ(ls, . . . , l2, d) and
Ψn (as, . . . , a2, d) in (77) and we start with the former, i.e.
boundingΠ(ls, . . . , l2, d). We bound each sum ofπ(·) in
Π(ls, . . . , l2, d) of (77) by the maximum of summations
multiplied by the number of terms in the sum. From (63) we
see thatπ(·) is maximized when all the three arguments are
the same and using Corollary 2.11 we take largest possible
arguments that are equal in the range of the summation. In
this way the following proposition provides the bound we end
up.

Proposition 4.1:Let’s make each summation over the sets
with the same number of columns to have the same range
where the range we take are the maximum possible for each
such set. Let’s also maximizeπ(·) where all its three input

variables are equal and are equal to the maximum of the
third variable. Then we bound each sum by the largest term
in the sum multiplied by the number of terms. This scheme
combined with Lemma 2.5 give the following upper bound on
Π(ls, . . . , l2, d).

(⌈
Q0

2

⌉
d

(
5

4

)2
√

2π

⌊
Q0

2

⌋
d

)q0
×

⌈log2 s⌉−2∏

j=1



(⌈

Qj
2

⌉
d

(
5

4

)2
√

2π

⌊
Qj
2

⌋
d

)qj
×

(⌈
Rj
2

⌉
d

(
5

4

)2
√

2π

⌊
Rj
2

⌋
d

)rj
×

(⌈
Q⌈log2 s⌉−1

2

⌉
d

(
5

4

)2
√

2π

⌊
Q⌈log2 s⌉−1

2

⌋
d

)q⌈log2 s⌉−1

(79)

Proof: From (63) we have

π(y, y, y) =

(
5

4

)2
√

2πy(n− y)

n
<

(
5

4

)2√
2πy. (80)

Simply put, we bound
∑

x π(x, y, z) by multiplying the max-
imum of π(x, y, z) with the number of terms in the summa-
tion. Remember the order of magnitude of the arguments of
π(x, y, z) is x ≥ y ≥ z. Therefore, the maximum ofπ(x, y, z)
occurs when the arguments are all equal to the maximum value
of z. In our splitting scheme the maximum possible value of
l⌊Qj

2

⌋ is
⌊Qj

2

⌋
· d since there ared nonzeros in each column.

Also l⌊Qj
2

⌋ ≤ lQj
≤ l⌊Qj

2

⌋ + l⌈Qj
2

⌉ so the number of terms

in the summation overlQj
is
⌈Qj

2

⌉
· d, and similarly forRj .

We know the values of theQj and theRj and their quantities
qj andrj respectively from Lemma 2.5.

We replacey by
⌊Qj

2

⌋
· d or

⌊Rj

2

⌋
· d accordingly into the

bound ofπ(y, y, y) in (80) and multiply by the number of
terms in the summation, i.e.

⌈Qj

2

⌉
·d or

⌈Rj

2

⌉
·d. This product

is then repeatedqj or rj times accordingly until the last level
of the split, j = ⌈log2 s⌉ − 1, where we haveq⌈log2 s⌉−1 and
Q⌈log2 s⌉−1 (which is equal to 2). We excludeR⌈log2 s⌉−1 since
lR⌈log2 s⌉−1

= d. Putting the whole product together results to
(79) hence concluding the proof of Proposition 4.1.

As a final step we need the following corollary.

Corollary 4.2:

Π(ls, . . . , l2, d) <
2

25
√
2πs3d3

· exp [3s log(5d)] . (81)

Proof:

From Lemma 2.5 we can upper boundRj by Qj . Conse-
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quently (79) is upper bounded by the following.

(⌈
Q0

2

⌉
d

(
5

4

)2
√

2π

⌊
Q0

2

⌋
d

)q0
×

⌈log2 s⌉−2∏

j=1

(⌈
Qj
2

⌉
d

(
5

4

)2
√
2π

⌊
Qj
2

⌋
d

)qj+rj
×

(⌈
Q⌈log2 s⌉−1

2

⌉
d

(
5

4

)2
√

2π

⌊
Q⌈log2 s⌉−1

2

⌋
d

)q⌈log2 s⌉−1

(82)

Now we use the property thatqj + rj = 2j for j =
1, . . . , ⌈log2 s⌉ − 1 from Lemma 2.5 to bound (82) by the
following.

⌈log2 s⌉−1∏

j=0

(⌈
Qj
2

⌉
d

(
5

4

)2
√
2π

⌊
Qj
2

⌋
d

)2j

. (83)

We have a strict upper bound whenr⌈log2 s⌉−1 6= 0, which
occurs whens is not a power of2, because then byqj+rj = 2j

we haveq⌈log2 s⌉−1 + r⌈log2 s⌉−1 = 2⌈log2 s⌉−1. In fact (83) is
an overestimate for a larges which is not a power of2.

NoteQj =
⌈
s
2j

⌉
by Lemma 2.5. Thus

⌈
Qj

2

⌉
=
⌈

s
2j+1

⌉
and⌊

Qj

2

⌋
≤
⌈

s
2j+1

⌉
. So we bound (83) by the following.

⌈log2 s⌉−1∏

j=0

(⌈ s

2j+1

⌉
d

(
5

4

)2√
2π
⌈ s

2j+1

⌉
d

)2j

(84)

Next we upper bound⌈log2 s⌉ − 1 in the limit of the
product by log2 s and upper bound⌈ s

2j+1 ⌉ by s
2j+1 + 1

2 =
s

2j+1

(
1 + 2j+1

s

)
, we also move thed into the square root and

combined the constants to have the following bound on (84).

log2 s∏

j=0

[
s

2j+1

(
1 +

2j+1

s

)(
25

√
2π

16

)
×

√
s

2j+1

(
1 +

2j+1

s

)
d3

]2j

.

We bound
(
1 + 2j+1

s

)
by 2 to bound the above by

log2 s∏

j=0

[
s

2j

(
25

√
2π

16

)√
s

2j
d3

]2j

=

log2 s∏

j=0

[(
25

√
2π

16

)√
s3d3

23j

]2j

(85)

where we moveds/2j into the square root. Using the rule
of indices the product of the constant term is replaced by it’s
power to sum of the indices. We then rearranged to have the

power3/2 in the outside and this gives the following.

(
25

√
2π

16

)∑log2 s

i=0 2i


log2 s∏

j=0

(
sd

2j

)2j


3/2

(86)

=

(
25

√
2π

16

)2s−1

(sd)

∑log2 s

i=0 2i
log2 s∏

j=0

(
1

2j

)2j


3/2

(87)

=

(
25

√
2π

16

)2s−1

(sd)2s−1

(
1

2

)∑log2 s

j=0 j2j


3/2

. (88)

From (86) to (87) we evaluate the power of the first factor
which is a geometric series and we again use the rule of indices
for the sd factor. Then from (87) to (88) we use the indices’
rule for the last factor and evaluate the power of thesd factor
which is also a geometric series. We simplify the power of the
last factor by using the following.

m∑

k=1

k · 2k = (m− 1) · 2m+1 + 2. (89)

This therefore simplifies (88) as follows.

(
25

√
2π

16

)2s−1 [
(sd)

2s−1

(
1

2

)(log2 s−1)·2log2 s+1+2
]3/2

(90)

=

(
25

√
2π

16

)2s−1 [
(sd)2s−1

(
1

2

)2s(log2 s−1)
1

4

]3/2
(91)

=

(
25

√
2π

16

)2s−1 [
(sd)2s

4sd
2−2s log2 s22s

]3/2
(92)

=

(
25

√
2π

16

)2s(
16

25
√
2π

)[
(2sd)2s

4sd
s−2s

]3/2
(93)

=

(
25

√
2π

16

)2s(
16

25
√
2π

)[
(2d)2s

4sd

]3/2
. (94)

From (90) through (92) we simplified using basic properties
of indices and logarithms. While from (92) to (93) we incor-
porated22s into the first factor inside the square brackets and
we rewrote the first factor into a product of a power ins and
another withouts. From (93) to (94) thes2s ands−2s canceled
out.

Now we expand the square brackets in (94) to have (95)
below.
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(
25

√
2π

16

)2s (
16

25
√
2π

)
1

8
√
s3d3

(2d)3s (95)

=

(
25

√
2π

16

)2s

(2d)3s
2

25
√
2πs3d3

(96)

=
2

25
√
2πs3d3

· exp


3s log


2

(
25

√
2π

16

)2/3

d




 (97)

<
2

25
√
2πs3d3

· exp [3s log(5d)] (98)

From (95) to (96) we simplified and from (96) to (97) we
rewrote the powers as an exponential with a logarithmic expo-

nent. Then from (97) to (98) we upper bounded2
(

25
√
2π

16

)2/3

by 5 which gives the required format of a product of a
polynomial and an exponential to conclude the proof the
corollary.

With the bound in Corollary 4.2 we have completed
the bounding ofΠ(ls, . . . , l2, d) in (77). Next we bound
Ψn (as, . . . , a2, d) which is given by (78). Lemma 2.5 gives
the three arguments for eachψn(·) and the number ofψn(·)
with the same arguments. Using this lemma we express
Ψn (as, . . . , a2, d) as

⌈log2(s)⌉−2∑

j=0

[
qj · ψn

(
aQj

, a⌈Qj
2

⌉, a⌊Qj
2

⌋
)
+

rj · ψn
(
aRj

, a⌈Rj
2

⌉, a⌊Rj
2

⌋
)]

+

q⌈log2(s)⌉−1 · ψn (a2, d, d) . (99)

Equation (99) is bounded above in Lemma 2.7 by the follow-
ing.

⌈log2(s)⌉−1∑

j=0

2j · ψn
(
aQj

, a⌊Rj
2

⌋, a⌊Rj
2

⌋
)
. (100)

If we let thea2i = aQj
andai = a⌊Rj

2

⌋ we have (100) equal

to the following.

⌈s/2⌉∑

i=1

s

2i
· ψn (a2i, ai, ai) =

⌈s/2⌉∑

i=1

s

2i

[
ai · H

(
a2i − ai
ai

)

+(n− ai) · H

(
a2i − ai
n− ai

)
− n · H

(ai
n

)]
. (101)

Now we combine the bound ofΠ(ls, . . . , l2, d) in (81) and the
exponential whose exponent is the bound ofΨn (as, . . . , a2, d)
in (101) to get (2), the polynomialpmax(s, d) = 2

25
√
2πs3d3

,
and (3), the exponent of the exponentialΨ(as, . . . , d) which
is given by the sum of3s log (5d) and the right hand side of
(101).

Lemma 2.8 gives theai that maximize (101) and the
systems (53) and (54) they satisfy depending on the constraints
onas. Solving completely the system (53) givesâi in (52) and
(4) which are the expected values of theai. The system (5)
is equivalent to (54) hence also proven in Lemma 2.8. This
therefore concludes the proof Theorem 1.6.

B. Main Corollaries

In this section we present the proofs of the corollaries in
Sections I-A and I-B. These include the proof of Corollary
1.7 in Section IV-B1, the proof of Corollary 1.10 in Section
IV-B2 and the proof of Corollary 1.11 given in Section IV-B3.

1) Corollary 1.7: Satisfying RIP-1 means that for any
s−sparse vectorx, ‖ASx‖1 ≥ (1− 2ǫ)d‖x‖1 which indicates
that the cardinality of the set of neighbors satisfies|As| ≥
(1− ǫ)ds. Therefore

Prob(‖ASx‖1 ≤ (1− 2ǫ)d‖x‖1)
≡ Prob(|As| ≤ (1− ǫ)ds) . (102)

This implies thatas = (1 − ǫ)ds and since this is restricting
as to be less than it’s expected value given by (4), the rest
of the ai satisfy the polynomial system (5). If there exists a
solution then theai would be functions ofs, d and ǫ which
makesΨ(as, . . . , a2, d) = Ψ (s, d, ǫ).

2) Corollary 1.10: Corollary 1.7 states that by fixingS
and the other parameters, Prob(‖ASx‖1 ≤ (1 − 2ǫ)d‖x‖1) <
pmax(s, d) · exp [n ·Ψ(s, d, ǫ)]. Corollary 1.10 considers
any S ⊂ [N ] and since the matrices are adjacency
matrices of lossless expanders we need to consider any
S ⊂ [N ] such that |S| ≤ k. Therefore our target is
Prob(‖Ax‖1 ≤ (1 − 2ǫ)d‖x‖1) which is bounded by a simple
union bound over all

(
N
s

)
S sets and by treating each set

S, of cardinality less thank, independent we sum over this
probability to get the following bound.

k∑

s=2

(
N

s

)
· Prob(‖ASx‖1 ≤ (1 − 2ǫ)d‖x‖1) (103)

<

k∑

s=2

(
N

s

)
· pmax(s, d) · exp [n ·Ψ(s, d, ǫ)] (104)

<

k∑

s=2

(
5

4

)2
1√

2πs
(
1− s

N

) · pmax(s, d)

× exp
[
NH

( s
N

)
+ n ·Ψ(s, d, ǫ)

]
(105)

< k

(
5

4

)2
pmax(k, d)√
2πk

(
1− k

N

)

× exp

[
N

(
H

(
k

N

)
+
n

N
·Ψ(k, d, ǫ)

)]
. (106)

From (103) to (104) we bound the probability in (103) using
Corollary 1.7. Then from (104) to (105) we bound

(
N
s

)
using

Stirling’s formula (64) by a polynomial inN multiplying
pmax(s, d) and an exponential incorporated into the exponent
of the exponential term. From (105) to (106) we use that
for N > 2k the entropy H

(
s
N

)
is largest whens = k

and we bound the summation by taking the maximum value
of s and multiplying by the number of terms plus one,
giving k, in the summation. This givesp′max(N, k, d) =

k
(
5
4

)2 pmax(k,d)
√

2πk(1− k
N )

which simplifies to 1

16πk
√

d3(1− k
N )

and

the factorΨnet (k, n,N ; d, ǫ) = H
(
k
N

)
+ n

N · Ψ(k, d, ǫ) is
what is multiplied toN in the exponent as claimed.
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3) Corollary 1.11: Corollary 1.10 has given us an upper
bound on the probability Prob(‖Ax‖1 ≤ (1 − 2ǫ)d‖x‖1) in
(9). In this bound the exponential dominates the polyno-
mial. Consequently, in the limit as(k, n,N) → ∞ while
k/n → ρ ∈ (0, 1) and n/N → δ ∈ (0, 1) this bound
has a sharp transition at the zero level curve ofΨnet. For
Ψnet (k, n,N ; d, ǫ) strictly bounded above zero the overall
bound grows exponentially inN without limit, while for
Ψnet (k, n,N ; d, ǫ) strictly bounded below zero the over-
all bound decays to zero exponentially quickly. We define
ρexp(δ; d, ǫ) to satisfy Ψnet (k, n,N ; d, ǫ) = 0 in (13), so
that for anyρ strictly less thanρexp(δ; d, ǫ) the exponent will
satisfyΨnet (k, n,N ; d, ǫ) < 0 and hence the bound decay to
zero.

More precisely, fork/n → ρ < (1 − γ)ρexp(δ; d, ǫ) with
small γ > 0, in this regime ofρ < (1 − γ)ρexp(δ; d, ǫ)
we have Prob(‖Ax‖1 ≤ (1− 2ǫ)d‖x‖1) → 0. Therefore,
Prob(‖Ax‖1 ≥ (1− 2ǫ)d‖x‖1) → 1 as the problem size
grows such that(k, n,N) → ∞, n/N → δ ∈ (0, 1) and
k/n→ ρ.

V. A PPENDIX

A. Proof of Corollary 2.2

The first part of this proof uses ideas from the proof of
Proposition 2.1 which is the same as Theorem 16 in [33].
We consider a bipartite graphG(U, V,E) with |U | = N left
vertices,|V | = n right vertices and left degreed. For a fixed
S ⊂ U where |S| = s ≤ k, G fails to be an expander on
S if |Γ(S)| < (1 − ǫ)ds. This means that in a sequence of
ds vertex indices at leastǫds of the these indices are in the
collision set that is identical to some preceding value in the
sequence.

Therefore, the probability that a neighbor chosen uniformly
at random is to be in the collision set is at mostds/n and,
treating each event independently, then the probability that a
set ofǫds neighbors chosen at random are in the collision set
is at most(ds/n)ǫds. There are

(
ds
ǫds

)
ways of choosing a set of

ǫds points from a set ofds points and
(
N
s

)
ways of choosing

each setS from U . This means therefore that the probability
that G fails to expand in at least one of the setsS of fixed
sizes can be bounded above by a union bound

Prob(G fails to expand onS)

≤
(
N

s

)(
ds

ǫds

)(
ds

n

)ǫds
. (107)

We defineps to be the right hand side of (107) and we use
the right hand side of the Stirling’s inequality (64) to upper
boundps as thus

ps <
5

4

[
2π
ǫds

ds

(
1− ǫds

ds

)
ǫds

]− 1
2

exp

[
dsH

(
ǫds

ds

)]

× 5

4

[
2π

s

N
(1− s

N
)N
]− 1

2

× exp
[
NH

( s
N

)]
×
(
ds

n

)ǫds
(108)

Writing the last multiplicand of (108) in exponential form and
simplifying the expression gives

ps < pmax(N, s; d, ǫ) · exp [N ·Ψ(s, n,N ; d, ǫ)] , (109)

whereΨ(s, n,N ; d, ǫ) is

H
( s
N

)
+
ds

N
H (ǫ) +

ǫds

N
log

(
ds

n

)
, (110)

and pmax(N, s; d, ǫ) is a polynomial inN and s for eachd
andǫ fixed given by

(
5

4

)2

· 1

2πs
·
[

N

ǫ(1− ǫ)(N − s)d

] 1
2

. (111)

Finally G fails to be an expander if it fails to expand on at
least one setS of any sizes ≤ k. This means therefore that

Prob(G fails to be an expander) ≤
k∑

s=1

ps. (112)

From (109) we have
∑k

s=2 ps bounded by

k∑

s=2

pmax(N, s; d, ǫ) · exp [N ·Ψ(s, n,N ; d, ǫ)] (113)

< p′max(N, k; d, ǫ) · exp [N ·Ψ(k, n,N ; d, ǫ)] , (114)

wherep′max(N, k; d, ǫ) = k ·pmax(N, k; d, ǫ) and we achieved
the bound from (113) to (114) by upper bounding the sum with
the product of the largest term in the sum (which is when
s = k sincek < N/2) and one plus the number of terms in
the sum, givingk. Hence from (112) and (114) we have

Prob(G fails to be an expander) < p′max(N, k; d, ǫ)

× exp [N ·Ψ(k, n,N ; d, ǫ)] . (115)

As the problem size,(k, n,N), grows the exponential term
will be driving the probability in (115), hence having

Ψ(k, n,N ; d, ǫ) < 0 (116)

yields Prob(G fails to be an expander) → 0 as the problem
size (k, n,N) → ∞.

Let k/n → ρ ∈ (0, 1) and n/N → δ ∈ (0, 1) as
(k, n,N) → ∞ and we defineρexpbi (δ; d, ǫ) as the limiting
value of k/n that satisfiesΨ(k, n,N ; d, ǫ) = 0 for each
fixed ǫ and d and all δ. Note that for fixedǫ, d and δ it
is deducible from our analysis ofψn(·) in Section II-B that
Ψ(k, n,N ; d, ǫ) is a strictly monotonically increasing function
of k/n. Therefore for anyρ < ρexpbi , Ψ(k, n,N ; d, ǫ) < 0
as (k, n,N) → ∞, Prob(G fails to be an expander) → 0
andG becomes an expander with probability approaching one
exponentially inN which is the same as exponential growth
in n sincen→ Nρ.
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