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Abstract

A generic tool for analyzing sparse approximation algorithms is the restricted isometry property (RIP)
introduced by Candés and Tao. For qualitative comparison of sufficient conditions derived from an RIP
analysis, the support size of the RIP constants is generally reduced as much as possible with the goal of
achieving a support size of twice the sparsity of the target signal. Using a quantitative comparison via
phase transitions for Gaussian measurement matrices, three examples from the literature of such support
size reduction are investigated. In each case, utilizing a larger support size for the RIP constants results in a
sufficient condition for exact sparse recovery satisfied, with high probability, by a significantly larger subset
of Gaussian matrices.
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1. Introduction

In sparse approximation and compressed sensing, [6, 9, 13], one seeks to recover a compressible, or
simply sparse, signal from a limited number of linear measurements. This is generally modeled by applying
an underdetermined measurement matrix, A of size n x N, to a signal, € RY known to be compressible
or k-sparse. Having obtained the measurements y = Az, a nonlinear reconstruction technique is applied
which seeks a sparse signal returning these measurements. Numerous reconstruction algorithms have been
analyzed using a generic tool introduced by Candeés and Tao [9], namely the restricted isometry property
(RIP). Recently, the RIP has been generalized to account for the asymmetry about the unit of the singular
values of submatrices of the measurement matrix A, [1, 19]. In this article, we focus on Gaussian matrices,
i.e. matrices whose entries are selected i.i.d. from the normal distribution A (0,1/n), and denote the set of
all k-sparse signals by xV (k) = {x € RY : ||z||o < k}, where ||z|y counts the number of nonzero entries of x.

Definition 1 (RIP [9] and ARIP [1]). For an n x N matrix A, the asymmetric RIP constants L(k,n, N)
and U(k,n, N) are defined as:

L(k,n,N) := m>1{)1 ¢ subject to (1 —¢)||z||3 < ||Az|3, for all =€ XV (k); (1)
c=2
U(k,n,N) := min ¢ subject to (1+ o)l|lz|2 > ||Az||3, for all = € XN (k). (2)

The standard (symmetric) RIP constant R(k,n,N) is then defined by

R(k,n,N) := max{L(k,n,N),U(k,n,N)}. (3)
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We refer to the first argument of the RIP constants, k, as the support size of the RIP constant. In the
analysis of sparse approximation algorithms, intuition and aesthetics have led to the desire to reduce the
support size of the RIP constants to 2k. Two important facts have played a substantial role in motivating
the search for RIP statements with support size 2k. First, in order to correctly recover a k-sparse signal, the
measurement matrix A must be able to distinguish between any two signals in x*V (k), therefore, necessitating?
that L(2k,n,N) < 1. Second, the early sufficient conditions [8, 9] for successful k-sparse recovery via ;-
regularization involved various support sizes. The results were eventually superseded by Candes’s elegant
sufficient RIP condition with support size of 2k, i.e. R(2k,n, N) < v/2 — 1, [7]. When analyzing alternative
sparse approximation algorithms, qualitative comparisons to Candes’s result motivate a desire to state results
in terms of RIP constants with support size 2k.

In this article, we employ the phase transition framework advocated by Donoho et. al. [12, 15, 16, 17, 18]
and subsequently applied to the RIP [1, 2, 3]. The phase transition framework provides a method for
quantitative comparison of results involving the RIP. The quantitative comparisons demonstrate that the
desire for qualitative comparisons obtained by reducing the support size often leads to stricter sufficient
conditions.

1.1. Organization and Notation

In the following, we present three instances in the literature where reducing the support sizes of the RIP
constants results in a more stringent sufficient condition for sparse signal recovery. By using the quantitative
comparisons available through the phase transition framework, outlined in Section 1.3, we examine three
cases where larger RIP support sizes yield weaker sufficient conditions for exact k-sparse recovery with
Gaussian measurement matrices. These three examples are certainly not exhaustive, but suffice in conveying
the idea.

(i) For Compressive Sampling Matching Pursuit (CoSaMP) [20], Needell and Tropp apply a bound on the
growth rate of RIP constants to reduce the support size of the RIP constants from 4k to 2k resulting
in a significantly stronger sufficient condition. (Section 1.2)

(ii) The current, generally accepted state of the art sufficient condition for ¢;-regularization obtained by
Foucart and Lai [19] involves RIP constants with support size 2k. However, a sufficient condition
involving RIP constants with support sizes 11k and 12k yields a weaker sufficient condition for exact
k-sparse recovery via {i-regularization. (Section 2)

(iii) A clever technique of splitting support sets introduced by Blumensath and Davies [5] allows a reduction
of the support size of RIP constants in the analysis of Iterative Hard Thresholding (IHT). In this case,
the sufficient conditions for exact k-sparse recovery via IHT are again weaker with the larger support
size of the RIP constants. We apply the support set splitting to CoSaMP demonstrating that this
method of support size reduction generally fails to provide a quantitative advantage. (Section 3)

In the following, if S is an index set, then |S| denotes the cardinality of S, Ag represents the submatrix
of A obtained by selecting the columns indexed by S, and zg is the set of entries of z indexed by S. Finally,
even when not explicitly stated, it is assumed throughout that the support size of an RIP constant is no
larger than the number of measurements, e.g. if A is of size n x N with RIP constant R(mk,n,N), we
implicitly assume mk <n < N.

1.2. A Simple Example

A straightforward and dramatic example of a weaker condition with a larger RIP support size is found
in the analysis of the greedy algorithm CoSaMP [20]. In this work, Needell and Tropp provide a sufficient

2An advantage of the asymmetric formulation of the RIP is that L(2k,n, N) < 1 is truly a necessary condition as opposed
to the often stated, but not necessary requirement R(2k,n, N) < 1.
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Figure 1: CoSaMP: (a) Lower bounds on the exact k-sparse recovery phase transition for Gaussian random matrices; R(d, 4p) <
0.1 (red), R(6,2p) < 0.025 (blue). (b) The ratio of the two phase transition curves in (a).

condition for guaranteed recovery of k-sparse vectors, namely R(4k,n, N) < 0.1. The authors also provide
a very nice bound on the growth rate of RIP constants, R(ck,n, N) < ¢- R(2k,n,N), [20, Cor. 3.4]. For
qualitative comparison to current results for ¢;-regularization, such as Candes’s R(2k,n, N) < v2 — 1, [7],
Needell and Tropp apply their bound on the growth of RIP constants to obtain the condition R(2k,n,N) <
0.025, [20, Rmk. 2.2], which is therefore also sufficient for the exact recovery of k-sparse signals. Lacking a
quantitative comparison of the two conditions, the authors do not claim that reducing the support size is
advantageous, only that such a reduction is still sufficient for CoSaMP to exactly recover k-sparse signals.
However, the condition involving the support size 4k is considerably weaker than the condition with support
size 2k when applied to Gaussian random matrices. By employing a bound (described in Section 1.3) R(d, p)
asn — oo with & — 4, % — p, lower bounds on the phase transition for exact k-sparse recovery via CoSaMP
are obtained.

In Figure 1(a), lower bounds on the phase transition are displayed for the two conditions. With ex-
ponentially high probability, Gaussian matrices A of size n x N will satisfy the sufficient conditions for
CoSaMP to exactly recover every x € x¥(k) provided the ordered pair (d,p) = (%> %) falls below the
associated phase transition curve in the phase space [0,1]2. For Gaussian matrices, R(4k,n, N) < 0.1 is
a superior bound to R(2k,n, N) < 0.025 as the region of the phase space representing matrices satisfying
R(4k,n, N) < 0.1 with high probability has greater than 9.7 times the area of the phase space region deter-
mined by R(2k,n, N) < 0.025. Moreover, Figure 1(b) shows that the phase transition curve for the weaker
(4k) condition is between 8.96 and 9.83 times higher depending on 6.

1.8. The Phase Transition Framework

Computing the RIP constants for a specific matrix is a combinatorial problem and therefore intractable
for large matrices. In order to make quantitative comparisons, bounds on the probability density function
for the RIP constants have been derived for various random matrix ensembles [1, 9, 10, 14]. The current
best known bounds for Gaussian matrices were derived in [1] and are denoted L(, p), U (4, p), R(6, p) where
0= F,p= % The following is an adaptation of [1, Thm. 1].

Theorem 1 (Blanchard, Cartis, Tanner [1]). Let A be a matriz of size n x N whose entries are drawn i.i.d.
from N(0,1/n) and let n — oo with % — pand 5 — d. Let L(d,p) and U(J, p) be defined as in [1, Thm.



1]. Define R(9, p) = max{L(0,p),U(d,p)}. Then for any € >0, as n — oo,

Prob[L(k,n,N) < L(d,p) + ¢ — 1, (4)
Prob[U(k,n,N) < U(,p) +€ — 1, (5)
and Prob[R(k,n,N) < R(5,p) + €] — 1. (6)

The proof of this result appears in [1] with a more thorough explanation of its application to the phase
transition framework. Briefly, the phase transition framework is applied to results obtained via the RIP in the
following manner. For a given sparse approximation algorithm, for example ¢;-regularization, CoSaMP, or
Iterative Hard Thresholding (IHT), a sufficient condition is derived from an RIP analysis of the measurement
matrix A. This sufficient condition can be arranged to take the form p(k,n, N) < 1 where u(k,n,N) is a
function of the ARIP constants, L(-,n, N) and U(-,n, N), or, in a symmetric RIP analysis, it is a function of
R(-,n,N). As the RIP constants are bounded by Theorem 1, one obtains a bound, u(d, p) for the function
w(k,n, N) as n — oo with % — pand § — 0. The lower bound on the phase transition for the associated
sufficient condition for exact recovery of every z € x (k) is then determined by a function pg(§) which is
the solution to the equation p(d, p) = 1. The curve defined by pg(d) graphically displays the lower bound
on the strong (exact recovery for all k-sparse signals) phase transition defined by the sufficient condition
p(k,n,N) < 1. When A is a Gaussian matrix of size n x N and the ordered pair (%, %) falls below the
phase transition curve, then with exponentially high probability on the draw of A, the sufficient condition is
satisfied and the algorithm will exactly recover every x € N (k), i.e. the algorithm exactly recovers k-sparse
signals.

2. The RIP for ¢;-regularization

In this section we examine the current knowledge obtained from an RIP analysis for exact recovery
of k-sparse signals via f;-regularization. The problem of finding the sparsest signal x equipped only the
measurement matrix A and the measurements y = Az is, in general, a combinatorial problem. It is now well
understood that, under the right conditions, the solution to the tractable ¢1-regularization,

min ||z||; subject to y = Ax, (7)

is the unique, sparsest signal satisfying y = Ax.
Currently, it is generally accepted that the state of the art sufficient condition obtained by RIP analysis
for ¢;-regularization was proven by Foucart and Lai [19].

Theorem 2 (Foucart, Lai [19]). For any matriz A of size n x N with ARIP constants L(2k,n,N) and
U(2k,n,N), for 2k <n < N, if u'(k,n, N) < 1 where

_1+\/§(1+U(2k7naN)_1>7 (8)

M (k,n,N) =
w (k;m, N) 4 \1-L(2k,n,N)
then (1 -reqularization (7) exactly recovers every x € xN (k).

Motivated by the fact that the symmetric RIP constants are not invariant to scaling the matrix, Theorem 2
is proven with an asymmetric RIP analysis. Their method of proof also resulted in a slight improvement
to the symmetric RIP result of Candés mentioned above. With R(2k,n, N) defined as in (3), a sufficient

condition for exact recovery of every x € xN (k) from ¢;-regularization is R(2k,n, N) < 3+2ﬁ ~ 0.4531.

Note that Theorem 2 (and the result for R(2k,n, N)) involve RIP support sizes of 2k. One of the early
sufficient conditions for exact recovery of every z € x*V (k) by solving (7), namely 3R(4k,n, N)+R(3k,n, N) <
2, was obtained by Candes, Romberg, and Tao [8] from an RIP analysis. Chartrand [11] extended this result
to essentially arbitrary support sizes and to ¢,-regularization for ¢ € (0,1]. Chartrand’s extension was further




studied by Saab and Yilmaz [21, 22]. Here, the result is stated with an asymmetric RIP analysis following
the proof in [11] which, in turn, is an adaptation of Candes, Romberg, and Tao’s proof [8].

Theorem 3. Suppose k € Nt and b > 2 with bk € NT. Let A be a matriz of size n x N with ARIP constants
L([b+ 1]k,n,N) and U(bk,n,N) for b+ 1]k <n < N. If
bL([b+ 1)k,n,N) + U(bk,n,N) < b—1, (9)

then {1 -reqularization (7) exactly recovers every x € x™ (k).

Proof. Let x € x (k) and y = Az. Suppose z is a solution to (7). Define h = z — x. We demonstrate that
h = 0. Let Ty = supp(z) and arrange the elements of |h| on the complement, T, in decreasing order using
the partition TOC = T1 UT2 y---u TJ with ‘Tg| = bk for j = 1,. . .,J — 1 and |TJ| S bk. Let T01 = T() UTl.
Counting arguments and norm comparisons taken directly from [11] provide the following inequalities,

J

||AT01hT01 ”2 < Z HATjh‘Tj ||2 ’ (10)
j=2

[hrg ||, < hrolly s (11)

J
1
Z”thHQ < \/%HhTSHr (12)
=2

Now since |Tp1]| = |To| + |T1| < [b+ 1]k and |T;| < bk for each j > 1, then by Definition 1,

HATthm”Q > \/1 - L([b+ 1]k7n7N) HhTm”Q (13)
and  ||Ag,hr, ||, < 1+ U(bk,n,N) ||hr, |, - (14)

Therefore, inserting (13) and (14) into (10) yields

1+ U(bk,n,N) &
ol < T s S o 09

Combining (11), (12), (15), and the standard relationship between norms, we then have

1+ U(bk,n,N) 1
h < h
” T01H2 = \/1 — L([b+ 1]]{?,7’L,N) \/@ ” ToHl

< 1+Uban |k ” H
- L([b+ 1]k, n,N) Toll2

14+ U(bk,n, N)
< .
= \/b — bL([b+ l]k,n, N) HhTm”Q (16)
Squaring and rearranging (16),
([b—1] = [bL([b+ 1]k, n, N) + U(bk,n, N)] ) || bz, |l < 0. (17)

The hypothesis (9) ensures the left hand side of (17) is nonnegative and zero only when |hz, |, = 0.
Therefore, h = 0 implying z = z. O

Following the framework described in Section 1.3 and more formally developed in [1], we restate The-
orems 2 and 3 in the language of phase transitions for Gaussian matrices. First, we state an equivalent
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Figure 2: ¢1-regularization: (a) lower bounds on the exact k-sparse recovery phase transition for Gaussian random matrices;

bt (.
p%(8;11) (red) and pgl(é) (blue). (b) The improvement ratio pif(f(’;)l).
s

condition to (9), namely u"(k,n, N;b) < 1 where

bL([b + 1]k, n, N) + U(bk,n, N
b—1

WPk, N3 b) o= . (18)

Clearly, (18) defines a family of functions indexed by b > 2 with bk € NT. Applying the bounds defined in
Theorem 1 to (8) and (18), we obtain the functions

1) and @26, pib) bL (3, [b+ 1]p) + U(é,bp) (19)

fl .

142 (1+U(6,2p)
4 <1—L(5,2p)

Now define p%'(8) as the solution to u/'(8, p) = 1. Similarly, define p%(d;b) as the solution to (4, p; b) = 1.

Theorem 4. For any € > 0, with § — 0 and % — p as n — oo, there is an exponentially high probability
on the draw of A with Gaussian i.i.d. entries that every x € x (k) is evactly recovered by {1-regularization
(7), provided one of following conditions is satisfied:

(i) p < Pk (6);
(ii) p < p%(5;b).

pél((s) is displayed as the blue curve in Figure 2(a). The highest phase transition curves are obtained
with b ~ 11. No single value of b provides a phase transition curve that is highest for all values of §. For
example, p%(3;10) > p%(8,11) for & € [0,.44] and p%(3;10) < p%(5,11) for § € [.45,1]. p%(5;11) is displayed
as the red curve in Figure 2(a). Although intuitively murky on the surface, support sizes of 11k and 12k
provide a larger region of Gaussian matrices which provably guarantee exact k-sparse recovery from an RIP
analysis. Figure 2(b) shows an improvement by a factor ranging from 1.11 to 1.38. By using a quantitative
comparison, we see that the weakest RIP condition is not Theorem 2, rather a weaker RIP sufficient condition
for exact recovery of every z € xV (k) via ¢;-regularization, at least for Gaussian matrices commonly used
in compressed sensing, is

11L(12k,n, N) 4+ U(11k, n, N) < 10. (20)

In a related direction, Saab, Chartrand, and Yilmaz [21] observed that, for {,-regularization with ¢ €
(0,1], larger support sizes provide improved constants amplifying the error in the noisy or compressible



setting. Saab and Yilmaz [22] further discuss a sufficient condition for ¢,-regularization, ¢ € (0, 1], which is
weaker than Theorem 2 as the support size of the RIP constants increases.

3. Splitting Support Sets

In [5], Blumensath and Davies demonstrate how the introduction of an adaptive step-size into the Iterative
Hard Thresholding algorithm leads to better guarantees of stability. A further qualitative contribution of
the paper is to reduce the support size of the RIP constants in the convergence condition from 3k to 2k.
This support size reduction is essentially achieved by a single step in the proof of [5, Thm. 4].

Given the previous iterate 2!, we seek to identify some constant 7 such that

|A5Ar(z — 2)rll2 < nll(z — 2h)7 |2,

where S and T are disjoint subsets of maximum cardinality 2k and k respectively. It is a straightforward
consequence of the RIP that n can be taken to be R(3k,n,N), and this choice of 7 is used by Blumensath
and Davies in [4, Lemma 2] to derive for IHT the convergence condition R(3k,n, N) < 1/4/8. However,
the authors observe in [5] that one may split the set S into two disjoint subsets each of size k, and sub-
sequently apply the triangle inequality. In the symmetric setting this leads to the alternative choice of
n = V2R(2k,n, N). Though the method of proof in [5] varies significantly from that in [4] in other ways,
such as the switch to an adaptive step-size and a generalization to the asymmetric setting, we can nonetheless
examine the effect of the support set splitting alone. In this case, it is easy to adapt the proof of [4, Corollary
4] to show that the alternative convergence condition is R(2k,n,N) < 1/4. Thus the RIP support size is
reduced from 3k to 2k at the expense of a factor of v/2.

We compare the two conditions for Gaussian random matrices by means of the bounds defined in The-
orem 1. The resulting lower bounds on the exact k-sparse recovery phase transition are displayed in Fig-
ure 3(a). For Gaussian matrices, the convergence condition derived by support set splitting is in fact stronger,
showing that there is no quantitative advantage gained by splitting the support set in this manner.

In order to apply the support set splitting principle in the context of another algorithm and with an
ARIP analysis, we can generalize the result as the following lemma.

Lemma 5. Let S and T be disjoint sets of cardinality m -s and t respectively, where m, s and t are positive
integers, and suppose that A has ARIP constants L(s +t,n,N) and U(s + t,n, N). Then, for any vector v,

m
A3 Arvrls < Y2 {L(s 410, N) + Us + . N)} or

Proof. Split S into m equally-sized disjoint subsets S; such that S = J;“, S;. Then we have, by the
orthogonality of the S;, and by [4, Lemma 2],

[AsArvr|3 = \K;;11ASJ*ATQ;ﬁ
= Zi:l ||A§iATUT||2 )
< Y i {L(s+t,n,N)+U(s+t,n,N)} [lor|l3
= M IL(s+t,n,N)+U(s+t,n,N)} |lvr3,
from which the result now follows by taking square roots. O

As mentioned in Section 1.2, CoSaMP [20] is another greedy algorithm with a convergence guarantee in-
volving restricted isometry constants. Largely following the method of proof in [20], an asymmetric condition
guaranteeing convergence of CoSaMP was shown in [3] to be pu®?(k,n, N) < 1 for

v 1 L(4k,n,N) + U(4k,n, N)\ [ L(2k,n,N) + U(2k,n, N) + L(4k,n, N) + U(4k,n, N)
Hw (kan7N) =512
2 1—L(3k,n,N) 1—L(2k,n,N)
(21)

).
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Figure 3: Lower bounds on the exact k-sparse recovery phase transition for Gaussian random matrices: (a) THT: R(6,3p) < 1/v/8
(red)[, R(4,2p) < 1/4 (blue). (b) CoSaMP: various cases with or without support set splitting, pgSp’l((S) (red); pCSSp’Q((S) (blue);
P& () (green); pZP*(8) (black).

We apply Lemma 5 to the factors of u®?(k,n, N) involving {L(4k,n, N) + U(4k,n,N)}. To simplify the
following discussion, we define ¢(-,n, N) = L(-,n, N) + U(-,n, N). A consideration of the argument in the
original paper [20] shows that the first factor results from taking |S| = 2k and |T| = 2k. We may therefore
split S into two disjoint subsets of size k. By applying Lemma 5 with m = 2, we see that ¢(4k,n, N) may
be replaced by v2¢(3k,n, N). In the second case, we have |S| = 3k and |T'| = k. We therefore split this
set S into three disjoint subsets of size k. By applying Lemma 5 with m = 3, we see that ¢(4k,n, N) may
be replaced by v/36(2k,n, N). We consider now four alternative expressions for u?(k,n, N): u(*?(k,n, N)
is the original expression (21), u5°"(k,n, N) is obtained by substituting v/2¢(3k,n, N) for ¢(4k,n, N) in the
first factor of (21), us*(k,n, N) is obtained by substituting v/3¢(2k,n, N) for ¢(4k,n, N) in the second
factor of (21), and py** (k,n, N) is obtained by making both substitutions.
Applying the bounds from Theorem 1, we obtain asymptotic bounds on p " (k,n,N) for i =1,...,4:

esp(s v L (g L(0.40) U0, 4p)\ (L(6,20) + U(6,2p) + L(6,4p) + U(0.4p)
eprs o Lo V2(L(8,30) + U(6,3p) \ [ L(6,2p) + U(8,2p) + L(6,4p) + U(6,4p)

csp 1 L(5,4p) + U(8,4p)\ [ (1+ V3)(L(5,2p) + U(6,2p))
s (9,p) '2(2+ 1-1(5,3p) > 1-L(5,2p) )

N | V2(L(6,3p) + U(6,3p)) \ { (1+ v3)(L(5,2p) + U(5,2p))
Mt (0,0) =3 (“ 1= L(3,3p) ) ( 1= 1(5,2p) )

Finally, define pcSSp’i((;) as the solution to ;" (6,p) =1 fori=1,...,4.

Lower bounds on the exact k-sparse recovery phase transition for Gaussian random matrices are displayed
in Figure 3(b): p&P'(9) - red; p57%(8) - blue; p57%(8) - green; p&P*(9) - black. In all three cases, splitting
the support set results in a lower phase transition with the lowest phase transition occurring when both sets
are split. In summary, an examination of the lower bounds on the phase transitions for Gaussian matrices
derived from two well-known greedy algorithms shows that in each case support set splitting yields a stricter

sufficient condition for exact k-sparse recovery.



4. Conclusion

The RIP is a versatile tool, although a strict condition, for analyzing sparse approximation algorithms.
The desire for qualitative comparison of various results obtained from an RIP analysis motivates a reduction
in the support size of the RIP constants as evidenced by the literature. However, following the same methods
of proof (possibly with an ARIP analysis) and quantitatively comparing the resulting sufficient conditions
with the phase transition framework shows that the smallest support size is not necessarily ideal. This is
certainly dependent on the method of proof as the reduction in support size to 2k by Candes [7] clearly
gave a weaker sufficient condition than alternative sufficient conditions known at the time. It is therefore
plausible that improved proof techniques using the RIP can lead to weaker sufficient conditions in the future.
Meanwhile, given that a quantitative method of comparison exists, namely the phase transition framework
advocated by Donoho et. al.; such support size reductions in RIP constants can and should be examined for
efficacy.
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