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Abstract—We consider the problem of performing sparse
reconstruction of large-scale data sets, such as the image se-
quences acquired in dynamic MRI. Here, both conventional L1

minimization through interior point methods and Orthogonal
Matching Pursuit (OMP) are not practical. Instead we present
an algorithm that combines fast directional updates based around
conjugate gradients with an iterative thresholding step similar to
that in StOMP but based upon a weak greedy selection criterion.
The algorithm can achieve OMP-like performance and the rapid
convergence of StOMP but with MP-like complexity per iteration.
We also discuss recovery conditions applicable to this algorithm.

I. INTRODUCTION

A sparse signal expansion is a signal model that uses a linear
combination of a small number of elementary waveforms
to represent or approximate a signal. Such expansions are
of increasing interest in signal processing with applications
ranging from source coding [1] to de-noising [3], source
separation [4] and signal acquisition [5]. However it is still a
serious challenge to calculate sparse reconstructions for very
large data sets. Such signals can have millions of samples and
several thousand significant coefficients.

Let x ∈ R
M be a vector denoting the signal and Φ ∈

R
M×N a matrix with M < N . We will refer to Φ as the

dictionary and call the column vectors φi of Φ atoms. The
challenge is to find a vector y satisfying the relationship:

x = Φy + ε. (1)

However, because M < N , there is typically a continuum of
such solutions. It is therefore common to search for a vector
y that optimizes a certain sparsity measure. For example, it is
common to look for a vector y with the smallest number of
non-zero elements.

In this paper we are interested in greedy methods, the most
popular of which are Matching Pursuit (MP) [6] and Orthog-
onal Matching Pursuit (OMP) [7]. MP is an algorithm often
used for practical large scale applications since there are now
very efficient O(N log M) (per iteration) implementations [8],
[9] whenever fast transforms are available. For general dictio-
naries MP is O(NM) (per iteration). On the other hand, OMP
has superior performance. Current implementations, however,
are much more demanding both in terms of computation time

and memory requirement. Recently the authors presented a
new set of gradient pursuit algorithms that use directional
updates to perform approximate orthogonalization but with a
computational cost more akin to MP [2]. Here we present a
technique that combines these fast directional updates with
a very greedy threshold step that is derived from the weak-
Matching Pursuit selection rule.

The resulting algorithm selects multiple atoms at each
iteration and has a control parameter that allows one to trade
off computational cost (number of iterations) with recovery
performance. It is therefore well suited to tackle extremely
large signals such as dynamic MRI imaging.

A. Notation

Γn will denote a set containing the indices of the elements
selected up to and including iteration n. Using this index set
as a subscript, the matrix ΦΓn will be a sub-matrix of Φ
containing only those columns of Φ with indices in Γn. The
same convention is used for vectors. For example, yΓn is a
sub-vector of y containing only those elements of y with
indices in Γn. In general, the superscript in the subscript
of yΓn reminds us that we are in iteration n, on occasion,
however, we resort to using superscripts (e.g. yn) to label
the iteration. The Gram matrix GΓn = ΦT

ΓnΦΓn will also
be used frequently. In general, lower case bold face characters
represent vectors while upper case bold characters are used for
matrices. Individual elements from a vector will be in standard
type face with a subscript. For example g will be used to refer
to a gradient vector with gi denoting the ith element of this
vector. Inner products between vectors will often be written
using angled brackets, e.g. 〈x,y〉 = xT y.

II. GREEDY ALGORITHMS

The algorithms in this paper approximate a vector x itera-
tively. In iteration n we calculate an approximation using

x̂n = ΦΓnyΓn , (2)

and calculate the approximation error as

rn = x − x̂n. (3)



In each iteration, the approximation error is then used to
determine new elements to be selected from Φ in order to
find a better approximation.

Greedy algorithms such as MP and OMP use a common
selection strategy for the new atom at iteration n by choosing
the index such that:

in = argi max |ΦT rn−1| (4)

(breaking ties deterministically). However they differ signif-
icantly on how they update the residual. A broad family of
updates that include those of MP and OMP are described next.

A. Directional updates

The Directional Pursuit family of algorithms can be sum-
marized as follows

1) Initialize r0 = x,y0 = 0,Γ0 = ∅
2) for n = 1;n := n + 1 till stopping criterion is met

a) gn = ΦT rn−1

b) in = argi max |gn
i |

c) Γn = Γn−1 ∪ in

d) calculate update direction dΓn

e) cn = ΦΓndΓn

f) an = 〈rn, cn〉/‖cn‖2
2

g) yn
Γn := yn−1

Γn + andΓn

h) rn = rn−1 − ancn

3) Output rn,yn

Different choices of update result in different algorithms
with different degrees of complexity. For example, if the
direction chosen in step 2d is dΓn = Φ†rn−1 then we get
the OMP algorithm. Similarly if we choose dΓn = εin , where
εk is the Dirac basis in R

N , we get the MP algorithm.

B. Faster: conjugate gradients updates

In [2] the authors proposed that we should choose directions
that aim to minimize:

f(yΓn) = ‖x − ΦΓnyΓn‖2
2, (5)

while still being computationally easy to calculate. In partic-
ular we could choose:

1) gradient updates (GP):

dΓn = gΓn = ΦT
Γn(x − ΦΓnyn−1

Γn ). (6)

2) conjugate gradient updates (ACGP):

dΓn = gΓn + βdn−1
Γn

, (7)

where dn−1
Γn

denotes the direction dΓn−1 extended by
padding with a zero into the n-dimensional space. β is
chosen to enforce conjugacy between dΓn and dn−1

Γn
:

β = −
〈
(ΦΓndn−1

Γn ), (ΦΓngn
Γn)

〉
‖ΦΓndn−1

Γn ‖2
2

. (8)

Here we will concentrate on the conjugate gradient update
direction which proved to be most effective.

Careful attention to the equations involved in Approximate
Conjugate Gradient Pursuit (ACGP) shows that it can be

implemented at a computational cost of 2Φ + 2M + 7n flops
per iteration at the nth step and a storage cost of N+2M+2n.
Here Φ denotes one (possibly fast) matrix-vector product
using either Φ or ΦT and it is these operations that dominate
the algorithm’s computational and storage costs. Specifically,
ACGP only requires such evaluations in calculating gΓn and
ΦΓngn

Γn . All other quantities can be calculated via simple
recursions.1

It can be seen that the cost per iteration is comparable to the
cost of an MP iteration. In contrast, OMP has a computational
and storage cost that is quadratic in n.

In [2] it was shown that performance of ACGP on inco-
herent dictionaries is very similar to that of OMP but at a
much reduced cost and can be used on problems whose size
precludes the computation and/or storage costs required by
OMP.

The full computational time of ACGP is also effected by the
number of iterations taken. Empirically we have found that we
require only slightly more iterations than the number of atoms
selected (in the Shepp-Logan phantom example in [2] we
needed about 4100 iterations to find 4000 atoms). However this
still leaves us with an overall computational cost dominated by
2nΦ flops which, when the number of significant coefficients,
n is large, may still be too many. We therefore next consider
how we might reduce the number of iterations required.

C. Greedier: stagewise selection

Another recent innovation in greedy algorithms was pro-
posed by Donoho et al. [11] where the stagewise OMP algo-
rithm (StOMP) was proposed. This differs from OMP in the
selection step. Instead of choosing the atom that best correlates
with the current residual, StOMP selects all atoms whose inner
product with the residual exceeds a given threshold:

Γn = Γn−1 ∪ {k : |〈φk, rn−1〉| ≥ λn} (9)

where λn is the threshold at iteration n. In [11] the authors
propose using: λn

stomp = t||rn−1||2/
√

M where the constant
t is recommended to be between 2 − 3.

Empirically, our experience has been that the selection step
in StOMP is not refined enough for general use. This is
particularly the case when the dictionary Φ is not draw from a
uniform spherical ensemble (for which StOMP is specifically
designed). We therefore introduce a different selection step.

1) Weak stagewise selection: A different strategy for a very
greedy selection step can be motivated by the weak-OMP
algorithm (WOMP). WOMP replaces the greedy selection step
(4) by a weak greedy selection step - select any atom φi such
that:

|〈φi, rn−1〉| ≥ α max |ΦT rn−1| (10)

where 0 ≤ α ≤ 1 is a control parameter. WOMP was
originally proposed to deal with issues related to infinite
dimensional dictionaries and has been shown to correctly
select atoms under similar conditions to OMP [13]. Here we

1This is one Φ less than is reported in [2] since we have subsequently
identified a further recursion to remove a matrix vector product



propose to use it on finite dimensional dictionaries to select
multiple atoms. To this end we define:

Definition 1 (Weak stagewise selection): At each iteration
select all atoms φi that satisfy (10).

Surprisingly it does not seem to have been noticed pre-
viously that all the results for WOMP in terms of recovery
and stability apply equally well to a stagewise weak-OMP
algorithm (SWOMP).

Let us briefly consider the relationship between the StOMP
selection and SWOMP selection. Both algorithms select atoms
by applying thresholding to ΦT rn−1 as described by (9). For
the weak stagewise selection we have:

λn
wss = α||ΦT rn−1||∞ (11)

Using norm inequalities we can see that:
α

t

√
Mσ1(Φ)λstomp ≥ λwss ≥ α

t
σM (Φ)λstomp (12)

where σk(Φ) denotes the kth singular value of Φ. We thus see
that the two thresholds are similar, however the key difference
lies in the fact that the SWOMP threshold is a function of
the correlation between the atoms and the residual rather than
only a function of the residual. This also allows us to extend
OMP recovery results to SWOMP. We will present these in
the next section. First we describe our preferred algorithm.

D. Faster & Greedier

To get the benefits of both our fast directional updates and
the greedy stagewise selection strategy we present the follow-
ing (preferred) algorithm which we call stagewise conjugate
gradient pursuit (StCGP):

Definition 2 (StCGP): For some pre-determined α, perform
the following two steps at each iteration:

1) Weak stagewise selection;
2) Conjugate gradient updating of the residual.

The algorithm can be stopped either when a desired number
of atoms has been identified or when the residual becomes
small enough.

StCGP thus provides a computationally efficient approxi-
mation to the SWOMP algorithm. The weakness parameter,
α, can be used to provide faster selection but typically at the
expense of requiring the dictionary to be more incoherent (see
next section). In the extreme case all atoms can be selected in
a single step and then SWOMP becomes a simple thresholding
algorithm [12]. It should be noted that when the total number
of selection steps is extremely small StCGP will benefit from
post-processing to fully orthogonalize the residual. However
these circumstances tend to occur when the selection step is
substantially smaller (in term of iterations and computation)
than the orthogonalization procedure.

III. RECOVERY ANALYSIS

We now consider the performance of our fast and greedy
algorithms in the context of incoherent and random dictionar-
ies. We will concentrate on the EXACT-SPARSE problem [13]
where the signal x is assumed to have some unknown m-sparse

representation in the dictionary Φ and we are interested in
determining an algorithm’s ability to correctly find the nonzero
coefficients.

A. Worst case analysis

Let us begin with a worst case analysis for the recovery
of an exact sparse signal based upon Tropp’s exact recovery
condition (ERC). In [13] Tropp showed that a sufficient
condition for WOMP to select an atom from the correct subset
at each iteration is:

max
k/∈Γ∗

||Φ†
Γ∗φk||1 < α (13)

where Γ∗ defines the correct subset of atoms. Subsequently
Gribonval and Vandergheynst [14] noted that the orthogonal-
ization property was never used in Tropp’s original arguments
and thus ‘general’ Matching Pursuit and ‘general’ Weak
Matching Pursuit also pick up only correct atoms under the
same conditions. This means for example that the worst case
analysis of Tropp also applies to GP and ACGP algorithms
[2].

We now make a similar observation that the stepwise nature
of the pursuit algorithms is also never used in the proofs. We
therefore have the immediate Corollary:

Corollary 1: A sufficient condition for either SWOMP or
StCGP to recover the sparsest representation of an exact sparse
signal is that (13) holds.

These results also translate into recovery conditions in terms
of dictionary coherence measures [13].

B. Exact recovery for random dictionaries

A key emerging application domain for sparse reconstruc-
tion algorithms is in compressed sensing. Here we are in-
terested in the ability to accurately estimate the significant
coefficients and their values to recover some observed signal
(or a sparse representation in some transform). Here it has been
shown that an important property for compressed sensing to
work is for the sensing matrix (dictionary) to have a restricted
isometry property:

(1 − ε) ≤ ||ΦT yT ||
||yT || ≤ (1 + ε) (14)

for any subsets T , |T | < 2m. This essentially limits the ability
for the matrix ΦT to shrink or magnify distances (i.e. it bounds
the condition number of the submatrices of Φ). In particular
a certain class of random dictionaries have this property and
recently Tropp and Gilbert [15] have derived conditions for
exact recovery with high probability using OMP. Specifically,
they have shown (using our notation):

Theorem 1: (Tropp & Gilbert [15]) Fix δ ∈ (0, 0.36) and
choose M ≥ Km log(N/δ) where K is an absolute constant.
Suppose that y is an arbitrary m-sparse signal in R

N and draw
a random M ×N admissible measurement matrix (dictionary)
independent from the signal. Given the data x = Φy, OMP
can reconstruct the signal with probability 1 − δ.

It is interesting to ask how our algorithms might perform
in such a situation.



We begin with the observation that the proof of theorem 1
above [15] can be easily adapted to include a weak stagewise
selection step by requiring the greedy selection ratio to always
be less than α. The modified result is as follows:

Theorem 2: (SWOMP with random measurements) As-
sume the same conditions as theorem 1 above but choosing
M ≥ Kα−2m log(N/δ). Then SWOMP can reconstruct the
signal with probability 1 − δ.

Extending the result to ‘general’ MP algorithms does not
appear possible since it is necessary in the proof for the
algorithms to pick up the correct atoms in at most m steps.
Although we always observe that ACGP picks up m atoms
in approximately m steps and that StCGP generally takes
substantially less steps we have no provable bound for this.
However since StCGP is an approximation of SWOMP we
typically observe that the performance is similar.

C. Convergence analysis

Although the gradient based directional updates do not fully
minimize the residual like OMP it can be shown that under
certain circumstances the single optimization step that these
updates constitute actually does a pretty good job.

Recall an important condition for correctly retrieving sig-
nificant atoms is the restricted isometry property, (14). If the
dictionary has a small restricted isometry constant, ε, then
every subdictionary is very nearly orthogonal. Specifically the
condition number, κ, of the subdictionary’s Gram matrix, GT

is bounded:

κ(GT ) ≤
(

1 + ε

1 − ε

)2

(15)

This can be used to explain the good performance of the
gradient based updates. A worst case analysis of the gradient
line search gives [17]:

f(yn
Γn) − f(y∗

Γn)
f(yn−1

Γn ) − f(y∗
Γn)

≤
(

κ − 1
κ + 1

)2

≤
(

2ε

(1 − ε)2

)2
(16)

where y∗
Γn denotes the least squares solution for (5). Hence for

small ε the convergence, even of a single gradient iteration, is
good. Finally, since the conjugate gradient update minimizes
the residual at least as well as the gradient update [18], we
can deduce that the CG updates also obey (16).

IV. NUMERICAL EXPERIMENTS

We now examine the performance of StCGP and its ability
to exactly recover signals in a simple toy example as well as
a more realistic medical image recovery problem. A Matlab
implementation of StCGP is available from the second author’s
web-page.

A. Exact Recovery Performance

To compare the StCGP algorithm to Orthogonal Matching
Pursuit, we use a simple toy problem. 10,000 dictionaries
of size 128 × 256 were generated with elements φi drawn
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Fig. 1. Comparison between Matching Pursuit (dotted), Orthogonal Matching
Pursuit (dashed), Gradient Pursuit (dash-dotted) and Stagewise Conjugate
Gradient Pursuit (solid) in terms of exactly recovering the original coefficients.
The ordinate shows the fraction of runs in which the algorithms exactly
recovered the index set Γ used to generate the data while the abscissa
shows the ratio of the size of Γ to the dimension of x. Results averaged
over 10 000 runs. The solid lines correspond to (from left to right): α =
0.7, 0.75, 0.8, 0.85, 0.9, 0.95 and 1.0.

uniformly from the unit sphere. From each dictionary, and
at a number of different degrees of sparsity, elements were
selected at random and multiplied with unit variance zero
mean Gaussian coefficients to generate 10,000 different signals
per sparsity level. We first analyze the average performance
of various greedy methods in terms of exact recovery of the
elements used to generate the signal.

The results are shown in figure 1. We here show the
results for MP, GP StCGP, ACGP and OMP. All algorithms
were stopped after they had selected exactly the number of
elements used to generate the signal. It is clear that weakening
the selection criterion reduces (in a controlled manner) the
recovery performance. The advantage of this is a reduction
in computational cost. This is shown in figure 2. Here the
curves correspond to (going from top to bottom): α =
1.0, 0.95, 0.9, 0.85, 0.8, 0.75 and 0.7. The top curve indicates
that the computational cost for ACGP (StCGP with α = 1.0)
grows linearly with the number of non-zero coefficients. In
contrast for α < 1.0 the computational cost grows much more
slowly. It should be noted here that these figures do not fully
capture the performance of StCGP since the dictionaries used
do not have a fast implementation. However they do provide
a fair relative comparison between different values of α.

B. Medical Imaging example

One particularly promising application domain of com-
pressed sensing is Magnetic Resonance Imaging (MRI) [16]
and we take our next example from this area using the
Logan-Shepp phantom. The physical process of acquiring MRI
images is equivalent to taking one dimensional slices from the
2-dimension Fourier domain of the image.

For rapid MR imaging it is desirable to take only a subset of



0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

Ratio of non−zero elements

A
ve

ra
ge

 c
om

pu
ta

tio
n 

tim
e

Fig. 2. Comparison of the computation time for StCGP with the different
values of alpha as in figure 1. The curves correspond to (going from top to
bottom): α = 1.0, 0.95, 0.9, 0.85, 0.8, 0.75 and 0.7.

these slices. For example one could take a reduced number of
radial lines of the Fourier domain data. In order to reconstruct
the original phantom image from the subsampled data we
utilize the fact that the image has a sparse representation in
the Haar wavelet transform.2 For this particular image of size
256 × 256, it was observed that the original image is well
approximated (over 300 dB peak signal to noise ratio) using
only 4000 of the wavelet coefficients. For this experiment the
measurement data consisted of a small number of radial lines
sampled from the spatial Fourier domain.

The Logan-Shepp phantom, its sparse representation, and
both the fully sampled measurement data and the data sub-
sampled at approximately 15% of Nyquist (42 radial lines in
the Fourier domain) are shown in figure 3. This is roughly the
limit for OMP to be able to fully reconstruct this image [2].

The performance for GP and ACGP along with OMP and
various L1 methods for this problem were reported in [2]
and we refer the reader to this paper for further details.
Here we examine the speed and performance of StCGP for
α between 0.5 and 1.0. The results are presented in table I.
In each case the algorithm was stopped once at least 4000
atoms were selected.3 Notice that for this data it is possible
to obtain an approximate speed up of 80 times using the
stagewise algorithm instead of the stepwise version. Even
using a relatively conservative value for α, of 0.9, gave an
8 times reduction is computation time.

C. Dynamic MRI example

The above improvements in computation time suggest that
StCGP should be a good algorithm for tackling very large-
scale problems such as those encountered in dynamic MRI
imaging.

2It is important to note that we here use a Haar wavelet basis as our sparse
representation and not a total variation based constraint as used for example
in [5].

3These simulations were performed using Matlab running on a 2GHz
Pentium PC.

Original / Reconstruction Haar Wavelet Transform

Frequency Domain Observation

Fig. 3. Magnetic Resonance Imaging (MRI) example. Original phantom
image (top left), Fourier domain representation (bottom left), observation of
15% of the frequency coefficients sampled along 42 radial lines (bottom right)
and sparse representation in Haar wavelet domain (top right).

TABLE I
THE NUMBER OF ITERATIONS, THE APPROXIMATE COMPUTATION TIME

AND PSNR PERFORMANCE (DB) FOR DIFFERENT VALUES OF α IN STCGP.

α 0.5 0.6 0.7 0.8 0.9 1.0
No. of iterations 51 81 214 293 474 4087

computation time (sec.) 19.4 33.3 82 114 182 1562
PSNR (dB) 59 79 311 311 309 301

For this example we used n subsampled version of a fully
sampled MRI image sequence of a beating mouse heart to sim-
ulate rapid imaging. The sequence consisted of 8 consecutive
256 × 256 images of the heart and we used a 3-dimensional
Haar basis as the sparse representation. As in the previous
example, measurements were taken using equally spaced radial
lines in the spatial Fourier domain for each image. To add a
degree of randomness the orientation of the lines was selected
uniformly at random for each image.

Figure 4 shows a plot of the original image sequence as
well as the reconstructed image sequence using StCGP with
α = 0.7 and stopping after selecting 20, 000 atoms. The
overall PSNR of the reconstruction was 31.3dB. Furthermore
the reconstruction took 50 minutes (44 iterations), which is
a speed up of approximately 450 times (based on iteration
count) compared with the stepwise algorithm!

V. CONCLUSIONS

We have presented new algorithms that exploit faster up-
dates by approximately orthogonalizing the residual and greed-
ier selection steps that pick up multiple atoms at once. The lat-
ter step is controlled by a weakness parameter, α that provides
a useful mechanism by which the greediness of the algorithm
can be controlled, moving from an iterative stepwise atomic



Fig. 4. Dynamic MRI example. The original image sequence (top) and the
image sequence reconstructed from 20% of the measurement data (bottom)
using StCGP with 44 iterations and α = 0.7.

selection to a single thresholding step. Thus one can directly
trade computational complexity for recovery performance. The
combined technique provides an extremely fast algorithm for
tackling large datasets such as those encountered in dynamic
MRI.

A further question to examine is whether or not the direc-
tional updates can also be used to replace the orthogonalization
step in another recently proposed stagewise greedy algorithm:
ROMP [19]. ROMP has theoretical recovery performance that
is better than OMP and more akin to L1 minimization. A
potential problem of using approximate orthogonalization is
that ROMP is allowed to select a small but contained number

of incorrect atoms. Since we do not have a bound on the
number of iterations needed by the gradient pursuit techniques
it may not be possible to ensure that the algorithm does not
select too many incorrect atoms.
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