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Abstract. We review connections between phase transitions in high-dimensional
combinatorial geometry and phase transitions occurring in modern high-dimensional

data analysis and signal processing. In data analysis, such transitions arise as

abrupt breakdown of linear model selection, robust data fitting or compressed
sensing reconstructions, when the complexity of the model or the number of

outliers increases beyond a threshold. In combinatorial geometry these tran-

sitions appear as abrupt changes in the properties of face counts of convex
polytopes when the dimensions are varied. The thresholds in these very differ-

ent problems appear in the same critical locations after appropriate calibration

of variables.
These thresholds are important in each subject area: for linear modelling,

they place hard limits on the degree to which the now-ubiquitous high-throughput
data analysis can be successful; for robustness, they place hard limits on the

degree to which standard robust fitting methods can tolerate outliers before

breaking down; for compressed sensing, they define the sharp boundary of the
undersampling/sparsity tradeoff curve in undersampling theorems.

Existing derivations of phase transitions in combinatorial geometry assume

the underlying matrices have independent and identically distributed (iid)
Gaussian elements. In applications, however, it often seems that Gaussian-

ity is not required. We conducted an extensive computational experiment and

formal inferential analysis to test the hypothesis that these phase transitions
are universal across a range of underlying matrix ensembles. We ran millions

of linear programs using random matrices spanning several matrix ensembles

and problem sizes; to the naked eye, the empirical phase transitions do not
depend on the ensemble, and they agree extremely well with the asymptotic

theory assuming Gaussianity. Careful statistical analysis reveals discrepancies

which can be explained as transient terms, decaying with problem size. The
experimental results are thus consistent with an asymptotic large-n universal-
ity across matrix ensembles; finite-sample universality can be rejected.
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1. Introduction

Recent work has exposed a phenomenon of abrupt phase transitions in high-
dimensional geometry. The phase transitions amount to rapid shifts in the like-
lihood of a property’s occurrence when a dimension parameter crosses a critical
level (a threshold). We start with a concrete example, and then identify surprising
parallels in data analysis and signal processing.

1.1. Convex hulls of Gaussian point clouds. Suppose we have a sample X1,
. . . , Xn of independent standard normal random variables in dimension d, forming
a point cloud of n points in Rd. Our intuition suggests that a few of the points
will lie on the ‘surface’ of the dataset, that is, the boundary of the convex hull;
the rest will lie ‘inside’, i.e. interior to the hull. However, if d is a fixed fraction
of n and both are large, our intuition is completely violated. Instead, all of the
points are on the boundary of the convex hull – none is interior. Moreover, the
line segment connecting the typical pair of points does not intersect the interior;
in complete defiance of expectation, it stays on the boundary. Even more, for k
in some appreciable range, the typical k-tuple spans a convex hull which does not
intersect the interior! For humans stuck all their lives in three-dimensional space,
such a situation is hard to visualize.

The phenomenon of phase transition appears as follows: such seemingly strange
behavior continues for quite large k, up to a predictable threshold given by a formula
k∗ = d · ρ(d/n;T ), where ρ() is defined in §2 below. Below this threshold (i.e. k
a bit smaller than k∗), the strange behavior is observed; but suddenly, above this
threshold (i.e. for k a bit larger) our normal low-dimension intuition works again –
convex hulls of k-tuples of points indeed intersect the interior.

This curious phenomenon in high-dimensional geometric probability is one of a
small number of fundamental such phase transitions. We claim they have conse-
quences in several applied fields:

• in selecting models for statistical data analysis of large datasets,
• in coping with outlying measurements in designed experiments,
• in determining how many samples we need to take in designing imaging

devices.
The consequences can be both profound and important. They range from negative-
philosophical – if your database has too many ’junk’ variables in it nothing can be
learned from it – to positive-practical – it isn’t really necessary to sit cooped up
for an hour in a medical MRI scanner: with the right software, the necessary data
could be collected in a fraction of the time commonly used today.

Our paper will help the reader understand more precisely what these phase
transitions are and where they may occur in science and technology; it will then
discuss our

Main contribution. We have observed a universality of threshold
locations across a range of underlying probability distributions. We
are able to change the underlying distribution from Gaussian to
any one of a variety of non-Gaussian choices, and we still observe
phase transitions at the same locations.

We compiled evidence based on millions of random trials and observed the same
phase transitions even for several highly non-iid ensembles. We here formally state
and test the universality hypothesis.
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Our research leads to an intriguing challenge for high-dimensional geometric
probability:

Open problem. Characterize the universality class containing
the standard Gaussian: i.e. the class of matrix ensembles leading
to phase transitions matching those for Gaussian polytopes.

Evidently this class is fairly broad. In view of the significance of these phase
transitions in applications, this is quite an attractive challenge. We begin by illus-
trating three surprising appearances of these phase transitions.

1.2. First surprise: model selection with large databases. A characteristic
feature of today’s data deluge is the tendency in each field to collect ever more and
more measurements on each observed entity, whether it be a pixel of sky, a sample
of blood or a sick patient. Technology continually puts in our hands high-throughput
measurement equipment making ever more varied and ever more detailed numerical
measurements on the spectrum of light, the protein expression in whole blood or
fluctuations in neural or muscular activity.

As a result, observed entities are represented by ever higher-dimensional feature
vectors. In fact the transition between the 20th and 21st centuries marked a sudden
increase in the dimensionality of typical datasets that scientists studied, so that it
became unremarkable for each observational unit to be represented as a data point
in a p-dimensional space with p very large – in the hundreds, thousand or millions.

The modern trend to high-throughput measurement devices often does not ad-
dress the fundamental difficulty of obtaining good observational units. Scientists
face the same troubles they always have faced when searching for subjects affected
by a rare disease, or observing rare events in distant galaxies. Hence, in many fields
the number of observational units stays small, perhaps in the hundreds (or even
dozens), but each of those few units can now be routinely subjected to unprece-
dented density of numerical description.

Orthodox statistical methods assumed a quite different set of conditions: an
abundance of observational units and a very limited set of measured characteristics
on each unit. Modern statistical research is intensively developing new tools and
theory to address the new unorthodox setting; such research comprised much of the
activity in the recent 6-month Newton Institute programme Statistical Theory and
Methods for Complex, High-Dimensional Data.

Consider a linear modelling scenario going back to Legendre, Gauss and perhaps
even before. We have available a response variable Y which we intend to model
as a linear function of up to p numerical predictor variables X1, . . . , Xp. We
contemplate an utterly standard multvariate linear model, Y = α +

∑
j βjXj + Z

where the βj are regression coefficients and Z is a standard normal measurement
error. In words, the expected value of Y given {Xj} is a linear combination with
coefficients βj .

Suppose we have a collection of measurements (Yi, Xi,j , j = 1, . . . , p), one for
each observational unit i. We will use these data to estimate the βj ’s, allowing
future predictions of Y given the Xj ’s.

In the ‘21st Century Setting’ described above, we have more predictor variables
than observations, meaning p > n. While Legendre and Gauss may have understood
the p < n case, they would have been very troubled by the p > n case: there are
more unknowns than equations, and there is noise to boot!
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A key feature of high-throughput analysis is that batches of potential predictors
are automatically measured but one does not know in advance which, if any, may be
useful in a particular project. Researchers in applied sciences where high through-
put studies are popular (e.g. genomics, proteomics, metabolonomics) believe that
some small fraction of the measured features are useful, among many useless ones.
Unfortunately, high-throughput techniques give us everything, useful and useless,
all mixed together in one batch.

In this setting, a reasonable response is forward stepwise linear regression. We
proceed in stages, starting with the simple model Y = α+Z (i.e. no dependence on
X’s) and at each stage expand the model by adding the single variable Xj offering
the strongest improvement in prediction.

Donoho & Stodden (2006) conducted a simulation experiment using forward
stepwise regression with False-Discovery-Rate control stopping rule. Their exper-
iment chose p = 200 and explored a range of n < p cases. Letting k denote the
number of useful predictors among the p potential predictors, they set up true un-
derlying regression models reflecting the choice (k, n, p), ran the stepwise regression
routine, and recorded the mean squared prediction error of the resulting estimate.
Figure 1 displays results: the coloured attribute gives the relative mean-squared
error of the estimate; the axes present the ratio δ = n/p of observations to vari-
ables, with 0 < δ < 1 in this brave new world, and ρ = k/n of useful variables to
observational units. Evidently there is an abrupt change in performance: one can
suddenly ‘fall off a cliff’ by slightly increasing the number of useless variables per
useful variable. The surprise is that the ‘cliff’ is roughly at the same position as
the overlaid curve. That curve, denoted by ρ(δ;C) and defined fully below, derives
from combinatorial geometry1 notions similar to those in §1.1.

Interpretation:
• A standard scientific data analysis approach in the ‘21st century setting’

‘falls off a cliff’, failing abruptly when the model becomes too complex.
• The location of this failure (ratio of model variables to observations) matches

a curve derived from the field of geometric combinatorics!

1.3. Surprise 2: robustness in designed experiments. We now consider a
problem in robust statistics. Suppose that a response variable Y is thought to
depend on p independent variables X1, . . . , Xp. Unlike the data-drenched high-
throughput observational studies of §1.2 we are in a classical designed experiment,
with p < n. The dependence is linear, so we again have Y =

∑
j βjXj + Z + W .

The error Z is again normal, but W is a ‘wild’ variable containing occasional very
large outliers.

Most scientists realize that such outliers could upset the usual least-squares pro-
cedure for estimating β, and many know that `1 minimization,

(1.1) min
b
‖Y −X ′b‖1,

is purported to be ‘robust’, particularly in designed experiments where wild X’s
do not occur. Let us focus on a specific designed experiment, where X is an n
by p partial Hadamard matrix, i.e. p columns chosen at random from an n × n
Hadamard matrix. This design chooses Xi,j either +1 or −1 in a very specific way;

1The auxilary parameter C in ρ(δ; C) is used to indicate the connection of this curve with the
standard cross-polytope C, defined in (2.4), from which it is derived.
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Figure 1. Phase Transition in Stepwise Regression Performance.
Average fractional error of the regression coefficients from Forward
Stepwise Regression with a False Discovery Threshold, ‖β̂−β‖/‖β‖
(Donoho & Stodden 2006). Horizontal axis: δ = n/p (number of
observations/number of variables). Vertical axis ρ = k/n (number
of useful variables / number of observations). Solid curve ρ(δ;C)
from combinatorial geometry. The rapid deterioration in perfor-
mance roughly coincides with this curve

there are no wild X’s. We let the outlier generators W have most entries 0, but,
in our study, a small fraction ε = k/n – at randomly-chosen sites – will have very
large values; in any one realization they can either be all large positive or all large
negative.

To clarify better the relationships we are trying to make in this paper we set the
standard error Z to zero, and consider only the ’wild’ outliers in W . We quantify
breakdown properties of the `1 estimator by a large computational experiment. We
vary parameters (k, n, p) creating a range of situations. At each one, we solve the
`1 fitting problem (1.1) and measure to how many digits β̂ agrees with β; we record
β̂ as breaking down due to outliers when fewer than six digits agree2. Panel (a) in
figure 2 shows the results of this experiment, depicting the breakdown fraction.

Evidently, there is an abrupt change in behaviour at a certain critical fraction
ε∗; this depends on γ = p/n. Now 0 < γ < 1, so there are here more observational
units than predictors. When there are many observation units per predictor, i.e.
ε∗ ≈ 1, `1 fitting can resist a large fraction of outliers. When the model is almost
saturated, i.e. nearly one predictor per observation, ε∗ ≈ 0, it takes very little con-
tamination to break down the `1 estimator. On figure 2(a) we overlay a theoretical
curve ε∗(γ;C) = (1 − γ)ρ((n − p)/n;C) where ρ(·;Q) is derived from geometric
combinatorics. Evidently the curve coincides with the observed breakdown point

2In order to save computer time, the actual experiment conducted used an asymptotic approx-

imation, asymptotic in the size of the amplitude of the Wild component. In our experiment, we
set Z to zero, and modified the definition of breakdown; instead of declaring breakdown when

the estimated beta was wrong by more than 5 standard errors, we declared breakdown when the

estimated beta was wrong in the sixth digit. Because of a scale invariance and continuity enjoyed
by `1, the experiments here can be viewed as the limit of standard robust statistics with ordinary

noise, as the size of the wild component increases relative to the size of the ordinary noise Z.
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Figure 2. Breakdown Point of `1 Fitting. Shaded attribute: frac-
tion of realizations in which regression coefficients from (1.1) are
accurate to within six digits. Panel (a) Horizontal axis: γ = p/n.
Vertical axis: ε = k/n. Curve: ε∗(γ). Panel (b) Horizontal axis:
δ = (n − p)/n. Vertical axis: k/p. Curve: ρ(δ;C). Same data
underly both panels. The left panel uses variables that are natural
for robustness experts; the right panel uses variables showing the
agreement with the pattern already seen in figure 1.

of the `1 estimator in a designed experiment. Figure 2(b) depicts a transformation
of panel (a), into new axes, with variables ρ = k/(n − p) and δ = (n − p)/n. The
display looks now similar to Stodden’s figure 1.

Interpretations:

• Standard `1 fitting in a standard designed experiment (but with large n
and p, this time with p < n) turns out to be robust below a certain critical
fraction of outliers, at which point it breaks down.

• The simulation results, properly calibrated, closely match seemingly unre-
lated phenomena in sparse linear modelling in the p > n case.

• This critical fraction matches a known phase transition in geometric com-
binatorics.

1.4. Surprise 3: compressed sensing. We now leave the field of data analysis
for the field of signal processing.

Since the days of Shannon, Nyquist, Whittaker and Kotelnikov, the ‘sampling
theorem’ has helped engineers decide how much data need to be acquired in design
of measurement equipment. Consider, therefore, the following imaging problem.
We wish to acquire a signal x0 having N entries. Now suppose that only k � N
of those pixels are actually nonzero – we do not know which ones are nonzero, or
even that this is true. There are N degrees of freedom here, since any of the N
pixel values vary.

Consider making n � N measurements of a special kind. We simply observe n
random Fourier coefficents of x. Here n � N so that, although the image has N
degrees of freedom, we make far fewer measurements. Let A be the linear operator
that delivers the selected n Fourier coefficients and let y be the resulting measured
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Figure 3. Compressed Sensing from random Fourier measure-
ments. Shaded attribute: fraction of realizations in which
`1minimization (1.2) reconstructs an image accurate to within six
digits. Horizontal axis: undersampling fraction δ = n/N . Vertical
axis: sparsity fraction ρ = k/n.

coefficients. We attempt to reconstruct by solving for the object x1 with smallest
`1 norm subject to agreeing with the measurements y:

(1.2) min ‖x‖1 subject to y = Ax.

Figure 3 shows results of computational experiments conducted by the authors.
In those experiments we chose N = 200 and varying levels of k and n. The horizon-
tal axis δ = n/N measures the undersampling ratio – how many fewer measurements
we are making than the customary N . The vertical axis ρ = k/n measures to what
extent the effective number of degrees of freedom k is smaller than the number of
measurements. The contours indicate the success rate. The superimposed curve
ρ(δ;C) roughly coincides with the empirical 50% success rate curve.

Interpretation: We can violate the usual ‘sampling theorem’ (n ≥ N) with im-
punity! The true limit is n & k/ρ(n/N ;C), where ρ(δ;C) is the curve decorating
the display3. We have seen this curve twice before already; it arises in a superficially
unrelated problem in high-dimensional geometric combinatorics.

1.5. The connection to high-dimensional geometric combinatorics. Recall
the problem in geometric probability we discussed in §1.1. Draw a sequence of
n samples X1, . . . , Xn from a standard d-dimensional normal distribution. Let
P = Conv(X1, . . . Xn) denote the convex hull of these n points; this is a random
convex polytope.

Suppose that d and n are both large, and let δ = d/n. Figure 4 presents a
black curve to be called ρ(δ;T ) and formally defined4 in §2. It has the following
interpretation.

3The symbol & denotes an asymptotic relatonship; for precise conditions see Donoho & Tanner

(2009a).
4The auxilary parameter T in ρ(δ; T ) associates this curve with T N−1, the standard simplex

(2.3); see §2.



8 DAVID L. DONOHO AND JARED TANNER

Let ρ = k/d. Suppose that ρ < ρ(d/n;T ) and that n and d are both large, with
d < n. For the typical k + 1 tuple (Xi1 , . . . Xik+1),

• every Xij
is a vertex of P , 1 ≤ j ≤ k + 1;

• every line segment [Xij
, Xij′ ] is an edge of P , 1 ≤ j, j′ ≤ k + 1;

• ...
• the convex polytope Conv(Xi1 , . . . Xik+1) is a k-dimensional face of P .

Figure 4 also presents a second, lower, black curve, which is actually the one we
have seen in our three surprises. This curve, denoted by ρ(δ;C) and defined in §2,
has the following interpretation. Draw the same n samples X1, . . . , Xn from a stan-
dard d-dimensional normal distribution. Now let Q = Conv(X1, . . . , Xn,−X1, . . . ,−Xn)
denote the convex hull of the 2n points including the original n points and their
reflections through the origin. This is a random centrosymmetric convex polytope.

Let ρ = k/d and ε > 0. Suppose that ρ < ρ(d/n;C)(1− ε) and that n and d are
both large. For the typical k + 1 tuple (Xi1 , . . . Xik+1),

• every ±Xij
is a vertex of Q, 1 ≤ j ≤ k + 1;

• every line segment [±Xij
,±Xij′ ] is an edge of Q, 1 ≤ j, j′ ≤ k + 1;

• ...
• the typical convex polytope Conv(±Xi1 , · · ·±Xik+1) is a k-dimensional face

of Q.
In short, the curve arising each time in Surprises 1-3 involves convex hulls of

symmetrized Gaussian point clouds. The curve involving ρ(δ;T ) would arise if we
had instead positivity constraints on the objects to be recovered (Surprises 1 and
3) or on the outliers (Surprise 2).

1.6. This paper. The curve ρ(δ;C) describes properties of high-dimensional poly-
topes deriving from the Gaussian distribution. What now seems surprising about
Surprises 1-3 is the lack of formal connection to those polytopes in the applications.
For example

• In Surprise 1, stepwise regression as practised by statisticians seems unre-
lated to convex polytopes.

In Surprises 2 and 3, the appearance of the `1 norm establishes a connection with
convex polytopes (as the unit ball of the `1 norm is in fact a regular polytope). Yet

• In Surprise 2, neither a Hadamard design nor outliers have any formal
connection to any Gaussian distribution.

• In Surprise 3, observing random frequencies of the Fourier transform of a
two-dimensional signal has no visible connection to any Gaussian distribu-
tion.

The curves ρ(δ;C) and ρ(δ;T ) accurately describe thresholds in many situations
where the Gaussian distribution is not present; in fact we have witnessed it in cases
where the points of a point cloud were chosen deterministically. We believe this
signals a new kind of limit theorem in probability theory that, when formalized, will
make precise a new kind of universality phenomenon in high-dimensional geometry.

2. Geometric combinatorics and phase transitions

2.1. Polytope terminology. Let P be a convex polytope in RN, i.e. the convex
hull of points p1, . . . , pm. Let A be an n ×N matrix. The image Q = AP lives in
Rn; it is a convex set, in fact a polytope, the convex hull of points Ap1, . . . , Apm. Q
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is the result of ‘projecting’ P from RN down to Rn and will be called the projected
polytope.

The polytopes P and Q are have vertices, edges, 2-dimensional faces, ... . Let
fk(P ) and fk(Q) denote the the number of such k-dimensional faces; thus f0(P )
is the number of vertices of P and fN (P ) the number of facets, while f0(Q) is the
number of vertices and fn(Q) the number of facets. Projection can only reduce the
number of faces, so

fk(Q) = fk(AP ) ≤ fk(P ), k ≥ 0.

Three very special families of polytopes P are available in every dimension N > 2,
the so-called regular polytopes. Here we consider two of the three:

• the simplex (an (N − 1)-dimensional analogue of the equilateral triangle)

(2.3) TN−1 :=

{
x ∈ RN|

N∑
i=1

xi = 1, xi ≥ 0

}
,

and the
• cross-polytope (an N -dimensional analogue of the octahedron)

(2.4) CN :=

{
x ∈ RN|

N∑
i=1

|xi| ≤ 1,

}
Statements concerning the hypercube similar to those made here for the simplex and
cross-polytope are available to an interested reader in Donoho & Tanner (2008a).

2.2. Connection to underdetermined systems of equations. The regular
polytopes are simple and beautiful objects, but are not commonly thought to be
useful objects. However, their face counts reveal solution properties of underde-
termined systems of equations. Such underdetermined systems arise frequently in
modern applications and the existence of unique solutions to such systems is re-
sponsible for the three surprises given in the introduction. Consider the case of the
simplex.

Consider the underdetermined system of equations y0 = Ax, where A is n×N ,
n < N , and the optimization problem (LP):

(LP) min 1′x subject to y0 = Ax, x ≥ 0.

Of course, ordinarily, the system has an infinite number of solutions as does the
problem (LP) .

Lemma 2.1. Let A be a fixed matrix with n columns in general position in RN .
Consider vectors y0 with a sparse solution y0 = Ax0 where x0 ≥ 0 has k nonze-
ros. The fraction of systems (y0, A) where (LP) has that underlying x0 as its only
solution is

fraction{Exact Reconstruction using (LP) } =
fk(ATN−1)
fk(TN−1)

.

In short, the ratio of face counts between the projected simplex and the un-
projected simplex tells us the probability that the (LP) correctly reconstructs a
k-sparse x0.

Consider the case of the cross-polytope. Apply the optimization problem (P1)
to the problem instance (y0, A) generated by

(P1) min ‖x‖1 subject to y0 = Ax,
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an underdetermined system of equations y0 = Ax0, where A is n × N , n < N .
Of course, ordinarily, both the linear system and the problem (P1) have an infinite
number of solutions.

Lemma 2.2. Let A be a fixed matrix with n columns in general position in RN .
Consider vectors y0 with a sparse solution y0 = Ax0 where x0 has k nonzeros. The
fraction of systems (y0, A) where (P1) has that underlying x0 as its unique solution
is

fraction{Reconstruction using (P1) } =
fk(ACN )
fk(CN )

.

In short, the ratio of face counts between the projected cross-polytope and the
unprojected cross-polytope tells us the probability that (P1) can successfully recover
a true underlying k-sparse object.

In short, it is essential to know whether or not
fk(AQ)
fk(Q)

≈ 1

for Q the simplex or cross-polytope.

2.3. Asymptotics of face counts with Gaussian matrices A. We now consider
the case where the n by N matrix A has iid Gaussian random entries. Then the
mapping P 7→ Q is a random projection. In this case, rather amazingly, tools from
polytope theory and probability theory can be combined to study the expected
face counts in high dimensions. The results demonstrate rigorously the existence
of sharp thresholds in face count ratios.

Theorem 2.1 (Donoho (2005a, b), Donoho & Tanner (2005a, b, 2009a)). Let the
n×N random matrix A have iid N(0, 1) Gaussian elements. Consider sequences of
triples (N,n, k) where n = δN , k = ρn, and N →∞. There are functions ρ(δ;Q)
for Q ∈ {T,C} demarcating phase transitions in face counts:

lim
N→∞

fk(AQ)
fk(Q)

=
{

1 ρ < ρ(δ,Q)
0 ρ > ρ(δ,Q).

Figure 4 displays the two curves referred to in this theorem. The simplex’s
transition is higher than the cross-polytope’s: ρ(δ, T ) > ρ(δ, C) for δ ∈ (0, 1).

3. Empirical results for non-Gaussian ensembles

3.1. Explorations. Over the last few years we ran computer experiments gen-
erating millions of underdetermined systems of equations of various kinds, using
standard optimization tools to select specific solutions, and checking whether or
not the solution was unique and/or sparse. In overwhelmingly many cases, Gauss-
ian polytope theory accurately matches the experimental results, even when the
matrices involved are not Gaussian. We here summarize results about experiments
with the non-Gaussian ensembles listed in table 1. Further detail is provided in the
Electronic Materials Supplement (Donoho & Tanner 2009b).

We varied the matrix shape δ = n/N , and the solution sparsity levels ρ = k/n.
At problem size N = 1600 we varied n systematically through a grid ranging from
n = 160 up to n = 1440 in 9 equal steps. At each combination N,n, k we considered
M = 200 different problem instances x0 and A, each one drawn randomly as above.
We both generated nonnegative sparse vectors and solved (LP), and generated
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Suite Ensemble Name Coefficients Matrix Ensemble
3 Bernoulli + iid elements equally likely to be 0 or 1
4 Bernoulli ± iid elements equally likely to be 0 or 1
5 Fourier + n rows chosen at random from N by N DCT matrix
6 Fourier ± n rows chosen at random from N by N DCT matrix
7 Ternary (1/3) + iid elements equally likely to be -1, 0 or 1
8 Ternary (1/3) ± iid elements equally likely to be -1, 0 or 1
9 Ternary (2/5) + iid elements taking values -1, 0 or 1 with P (0) = 3/5
10 Ternary (2/5) ± iid elements taking values -1, 0 or 1 with P (0) = 3/5
11 Ternary (1/10) + iid elements taking values -1, 0 or 1 with P (0) = 9/10
12 Ternary (1/10) ± iid elements taking values -1, 0 or 1 with P (0) = 9/10
13 Hadamard + n rows chosen at random from N by N Hadamard matrix
14 Hadamard ± n rows chosen at random from N by N Hadamard matrix
15 Expander + special binary matrices, here with P (0) = 14/15
16 Expander ± special binary matrices, here with P (0) = 14/15
19 Rademacher + iid elements equally likely to be 0 or 1
20 Rademacher ± iid elements equally likely to be 0 or 1

Table 1. Suites of problem instances. Problem suite speci-
fies random matrix ensemble and coefficient sign pattern (+/±).
Ternary(p) ensemble has P (0) = 1 − p and P (±1) = (1 − p)/2.
Expanders with P (0) = p have distinct columns, each with fixed
fraction p of entries equal to one and other entries zero.

signed sparse vectors and solved (P1). The ‘signal processing language’ event ‘exact
reconstruction’ corresponds to the ‘polytope language’ event ‘specific k-face of Q is
also a k-face of AQ’. In both cases we speak of success, and we call the frequency
of success in M empirical trials at a given (k, n,N) the success rate. At each
combination N,n, we varied k systematically to sample the success rate transition
region from 5% to 95%. Figure 4 presents summary results, showing the level curves
for 50% success rate, for each of the 9 ensembles above. The appropriate theoretical
curves ρ(δ;Q) are overlaid. The uppermost nine curves give the case of nonnegative
solutions, Q = T , where we solve (LP); and the nine lower curves present the data
for Q = C, where we solved (P1). (Note: the Hadamard case is exceptional and
uses N = 512.)

At first glance, figure 4 shows excellent agreement between the actual empirical
results in each matrix ensemble5 and the asymptotic theory for the Gaussian. This
is not very surprising for A from the Gaussian ensemble; it merely proves that the
large-N polytope theory works accurately already at moderate N = 1600. For the
other ensembles there is not, to our knowledge, any existing theory suggesting what
we see so clearly here: phase transition behaviour in non-Gaussian ensembles that
accurately matches the Gaussian case (compare §4).

5Visual evidence, similar to figure 4, of qualitative agreement was presented at conferences in

2006-2009 by Donoho and Tanner for all but the Expander ensemble. Inclusion of the Expander
ensemble in the results presented here was motivated by evidence in Bernide et al. (2008) for
an Expander ensemble (with a different choice of P (0)) which also showing qualitative agreement

with the asymptotic phase transition ρ(δ; C).
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Figure 4. Upper curves: level curves of 50% success rate for each
non-Gaussian suite in Table 1 with nonnegative coefficients, as well
as for the Gaussian suite. Asymptotic phase transition ρ(δ;T )
overlaid in black. Lower curves: level curves for 50% success rate
for each suite in Table 1 with coefficients of either sign, and for
Gaussian suite. Asymptotic phase transition ρ(δ;C) overlaid in
black.

3.2. Universality hypothesis. Figure 4 suggests to us the following
Hypothesis. Universality of Phase Transitions. Suppose that
the n by N matrix A is sampled randomly from a “well-behaved”
probability distribution. Suppose that the N by 1 vector x0 is
sampled randomly from the set of k-sparse vectors, either with or
without positivity constraints on the nonzeros of x0. The observed
behaviour of solutions to (LP ) and (P1) will exhibit, as a function
of (N,n, k), success probabilities matching those which are proven
to hold when sampling from the Gaussian distribution with large
N .

This hypothesis really contains two assertions: (a) that many matrix ensembles
behave like the Gaussian; and (b) that moderate-sized N exhibit behaviour in line
with the N →∞ asymptotic.

The hypothesis also contains an element of vagueness, since we do not know at
the time of writing how to delineate the ensembles of random matrices over which
Gaussian-like behaviour will hold. Of course universality results are well known in
probability theory; the Central Limit Theorem is the most well-known universality
result for the distribution of sums of independent random variables. The precise
universality class of the Gaussian distribution for such sums was only discovered
two centuries after the phenomenon itself was identified. Apparently we are here at
the stage of just identifying a comparable phenomenon. We hope it does not take
two centuries to identify the corresponding universality class!

Clarification 1. In fact, our hypothesis could also be called a rigidity of the
phase transition – it is invariantly located at the same place in the phase diagram
across a range of matrix ensembles. In statistical physics, universality of a phase
transition means something different, and much weaker – not a rigidity, but instead
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a flexibility of the location of a phase transition while preserving an underlying
structural similarity. Our hypothesis is far stronger.

Clarification 2. In fact, there are trivial counterexamples to the hypothesis; for
example the matrix A of all ones does not generate any useful phase transition
behaviour.

3.3. Experimental procedure. We conducted a Monte Carlo experiment to test
the Universality Hypothesis.

The general procedure was like our earlier exploratory studies. We call a suite
a distribution of problem instances (y, A) fully specified by two factors: (1) the
ensemble of matrices A and (2) the ensemble of coefficients x0 generating y = Ax0.
Matrix ensembles include Bernoulli, Ternary, ... Coefficient ensembles studied here
have vectors of N coefficients with only k nonzeros, in sites chosen at random. The
positive sign coefficient ensemble indicated by + has all nonzeros drawn uniformly
from [0, 1]. The signed coefficient ensemble indicated by ± has nonzeros drawn
uniformly from [−1, 1]. For each suite we visited a collection of triples (N,n, k). At
each triple we drew a sequence of random problem instances of the given size and
shape from the given problem suite. We then ran optimization software to compute
the solution of the random problem. We computed observables from the obtained
solution, in particular the binary observable ExactRecon, which takes the value 1
when the obtained solution is equal to the true solution within 6 digits accuracy,
and zero otherwise.

We aimed to be confirmatory rather than exploratory: to use formal inferential
tools, and carefully explain apparent departures from our hypothesis. Our experi-
ments differed from earlier efforts in scope and attention to detail.

• Scale. We performed 2,948,000 separate optimizations spanning 16984 dif-
ferent situations. Our computations required the use of as many as 200
CPUs in an available cluster and overall required 6.8 CPU years. We con-
sidered 16 problem suites based on 8 different matrix ensembles; see table
1. The scope of previous exploratory studies, which can be measured in
CPU-days, is tiny by comparison.

• Calibration. The vast majority of our experimental computations relied on
Mosek, a commercial package. We made runs comparing the results with
CVX, a popular open-source optimization package. We believe our results
are consistent across optimizers.

3.4. Inferential formulation. Rather than go on a fishing expedition, from the
outset we chose to frame our evaluation of the evidence using standard inferential
procedures.

• Two-sample comparisons. The strict form of the Universality Hypothesis
says that the probability of unique solution under the Gaussian Ensemble
is the same as the probability of unique solution at each other ensemble
in the universality class. It follows that we may compare two sets of re-
sults at the same problem size, one with the Gaussian ensemble and one
where everything else in the problem is the same except that a specific
non-Gaussian ensemble is used. If at each ensemble we generate M prob-
lem instances and obtain M realizations of the observable ExactRecon,
strict universality requires that the number of successes in each ensemble
have a binomial probability distribution with the same success probability
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in both ensembles. Hence, the hypothesis really amounts to the assertion
that two binomial distributions are the same. We proceed with traditional
tests for equality of two binomial distributions. We chose to work with the
Z-score:

(3.5) Z(p̂0, p̂1;M) =
p̂0 − p̂1

ŜD(p̂0 − p̂1;M0,M1)
.

Here p̂i denotes “the fraction of cases where Exact Recon = 1 in ensemble
i”, and ŜD(p̂0−p̂1;M0,M1) is the appropriate standard error for comparing
proportions with possibly unequal sample sizes Mi. In this comparison
p̂0 describes the Gaussian baseline experiment, and p̂1 describes the non-
Gaussian alternative experiment. Under the Universality Hypothesis, Z
has an approximate standard normal distribution.

Reducing our problem merely to consideration of Z-scores we can for-
malize our hypothesis:

Strong Null Hypothesis: The Z scores have an approx-
imate N(0, 1) distribution at each value of (k, n,N).

• Study of asymptotics with problem size. The Strong Null Hypothesis seems
implausible a priori on the strength of experience from other settings.

Consider another setting where the Gaussian distribution is universal:
the central limit theorem. There, although the Gaussian distribution pro-
vides the correct limiting behaviour, there are well-understood departures
from Gaussian behaviour at small problem sizes. Such departures of course
decay with increasing problem size. The theory of Edgeworth expansions
shows that such deviations from Gaussianity decay with problem size ac-
cording to a specific power of size. Hence, for a symmetric distribution, we
will see deviations of order 1/(problem size) and, for an asymmetric one,
deviations of order 1/

√
problem size occur.

Analogously, in this setting we may see systematic behaviour of the Z-
scores varying with problem size N and perhaps also with k. We used three
problem sizes - N = 200, 400 and 1600 - so we might identify trends in the
Z-scores with problem size.

Weak Null Hypothesis: The Z-scores exhibit discrepan-
cies from the standard N(0, 1) distribution (e.g. in means,
variances, tail probabilities) which decay to zero with in-
creasing N .

3.5. Results. Results of our experiment were already summarized in figure 4. For
each suite in table 1, for each value of δ = n/N , we measured the value of ρ = k/n
at which the empirical probability of success crossed 50%. Each of the 18 different
curves in figure 4 presents results for one suite; each one depicts the 50% success
rate curves as a function of δ. These “empirical ρ curves” exhibit very strong visual
agreement with the corresponding theoretical curves ρ(δ;T ) and ρ(δ;C).

3.5.1. Raw Z-scores. Formal statistical tests are much more sensitive and objective
than visual impressions. Figure 5 displays the Z-scores (3.5) for two-sample com-
parisons between the Gaussian ensemble with nonnegative coefficients and the odd
numbered suites; similarly, figure 6 presents two-sample comparisons between the
Gaussian ensemble and the odd numbered suites. The eight panels in each figure
depict differences between each of the non-Gaussian ensembles and the Gaussian
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N #{i : |Zi| < 1} #{i : |Zi| < 2} #{i : |Zi| < 3} M
200 101 / 99.67 142 / 139.4 148 / 145.6 148
400 146 / 140.6 199 / 196.6 208 / 205.4 208
1600 258 / 267.6 380 / 374.2 394 / 390.9 394

Table 2. Higher Criticism style analysis of residual Z-scores in
suite 19. Cell contents: observed counts/expected counts.

ensemble. The problem shape δ = n/N runs along the horizontal axis; these plots
display results for N = 200, 400, 1600 all combined.

The vast majority of the Z-scores in these displays fall in the range −2, 2.
Finding 1: The Z-scores in bulk are consistent with our hypoth-
esis of no difference between the distributions.

In effect, our experiment conducted 16,984 hypothesis tests and found relatively
few ‘significant differences’ at the individual test level.

3.5.2. Rejection of strict universality. There are marked ‘tilts’ in the display of Z-
scores in figures 5 and 6; linear trends with δ are visually evident. Consider the
general mean-shift model

Z(δ, ρ;N,E) = µ(δ;N,E) + Z,

where Z ∼ N(0, 1) is standard normal. This expresses the idea that the observed
Z-scores exhibit ‘drift’ as a function of δ and N , but otherwise have the expected
statistical properties of such scores.

If µ is not truly zero in this model, then of course the null hypothesis of no
difference fails. In our setting this means that the Gaussian ensemble does not give
truly the same success probabilities as the ensemble being compared to it. Our
analysis below rejects the hypothesis that µ = 0:

Finding 2: The Z-scores are not consistent with the hypothesis
of Strict Universality. Exact finite-problem-size agreement of
success probabilities p1 and p0 between each alternative ensemble
and the Gaussian ensemble is not supported by our experiments.

3.5.3. Non-rejection of weak universality. We reformulate the weak universality hy-
pothesis in terms of moments:

Refined Null Hypothesis: for each ensemble E, µ(δ;N,E) tends
to zero with increasing N , and the standard deviation of Z scores
approaches 1.

This hypothesis has a clear motivation. Earlier displays aided the eye with lines
fitted to the means. Evidently, the mean Z-scores within a given suite are generally
closer to zero for N large than for N small. Hence, in an informal appraisal, the
refined null hypothesis seems quite plausible. Inspired by the ‘Higher Criticism’
(see Donoho & Jin (2009)), we compare the observed bulk distribution of Z scores
with the theoretical distribution N(0, 1). Table 2 shows roughly as many large Z
scores as one would expect under the null hypothesis.

Finding 3: The Z-scores do not reject the hypothesis of Weak
Universality. The difference between success probabilities p1 and
p0 for each alternative ensemble and the Gaussian ensemble can be



16 DAVID L. DONOHO AND JARED TANNER

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−3

−2

−1

0

1

2

3

4

5

δ=n/N

Z−score

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−6

−4

−2

0

2

4

6

δ=n/N

Z−score

(a) Bernoulli (b) Fourier

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−3

−2

−1

0

1

2

3

4

δ=n/N

Z−score

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−3

−2

−1

0

1

2

3

4

δ=n/N

Z−score

(c) Ternary (1/3) (d) Ternary (2/5)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−3

−2

−1

0

1

2

3

4

5

δ=n/N

Z−score

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

δ=n/N

Z−score

(e) Ternary (1/10) (f) Hadamard

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−3

−2

−1

0

1

2

3

4

5

δ=n/N

Z−score

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−4

−3

−2

−1

0

1

2

3

δ=n/N

Z−score

(g) Expander (h) Rademacher

Figure 5. Raw Z-scores comparing success rate of reconstruction
by (LP) for A from the Gaussian ensemble vs. success rate for A
from suites 3,5,7,9,11,13,15, and 19 in Table 1. Panels (a-e,g-h):
suites 3,5,7,9,11,15, and 19, respectively. Blue dots: N = 200; red
crosses: N = 400; black circles: N = 1600. Linear fits to the raw
z-scores in matching colors. Panel (f): Hadamard case, dyadic N
only. Blue dots: N = 256; red crosses: N = 512.
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Figure 6. Raw Z-scores comparing success rate in reconstruction
by (P1) for A from the Gaussian ensemble vs. success rate for A
from suites 4,6,8,10,12,14,16, and 20 in Table 1. Panels (a-e,g-h):
suites 4,6,8,10,12,16, and 20 respectively. Blue dots: N = 200; red
crosses: N = 400; black circles: N = 1600. Linear fits to the raw
z-scores in matching colors. Panel (f): Hadamard case, dyadic N
only. Blue dots: N = 256; red crosses: N = 512.
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adequately modelled as a matrix-dependent random variable with
stochastic order p1(A)− p0(A′) = Op(N−1/2), where A and A′ are
realizations in the two matrix ensembles.

3.6. Results not presented in the main text. In the appendix, we present a
fuller record of our analyses. Key points include the following.

• Transition zone scaling with N . We verified that the width w(δ,N ;Q) of
the zone where success probability drops from 1 to 0 scales as w ∝ N−1/2.

• Adequacy of probit model. We verified that the success rate varies with ρ
as a Probit function Φ((ρ − ρ(δ;Q))/w(δ,N ;Q)). Here Φ is the Gaussian
survival function and w is the transition width.

• Exceptional Ensembles. It is evident from figures 5-6 that, at small N =
200, certain ensembles offer a relatively poor match to the Gaussian case.
Most of these discrepancies can be accounted for by saying that in these ex-
ceptional ensembles, at small problem sizes, the level curve for 50% success
rate is shifted noticeably below the 50% curve for the Gaussian ensemble.
However, at the larger problem size N = 1600, both the shift and the ex-
ceptional character of the ensembles are no longer evident. For details, see
the appendix.

3.7. Limitations of our conclusions. We considered a limited set of matrix
ensembles in this study. The ensembles are not all based on iid elements – there
are dependencies among rows in the Fourier and Hadamard ensembles and among
columns in the Expander ensemble. Even so, there is a certain air of ‘orthogonality’
or ‘weak independence’ in these examples.

There are exceptions to the pattern presented here. The classical example of
cyclic polytopes shows that (LP) can have a notably higher success rate for very
special matrices than it does for random matrices (Donoho & Tanner, 2005a).

In addition to forward stepwise regression, (LP) and (P1), there are several
competing algorithms which we do not study here. Maleki & Donoho (2009) con-
ducted extensive empirical testing of many such algorithms and observed clear
phase-transition-like behaviour, which varies from algorithm to algorithm and from
the results presented here. Unlike the phase transitions presented here, which
match theoretical results in combinatorial geometry, the phase transitions observed
for competing algorithms are not yet supported by theoretical derivations.

4. Conclusion, and a glimpse beyond

Certain phase transitions in high-dimensional combinatorial geometry have been
derived assuming a Gaussian distribution. We had informally observed that the
Gaussian theory seemed approximately right even in some non-Gaussian cases. In
this study, we made extensive computational experiments with more than a dozen
matrix ensembles considering millions of instances at a range of problem sizes.
Empirical results for both Gaussian and non-Gaussian ensembles show finite-N
transition bands centred around the asymptotic phase transition derived from a
Gaussian assumption. The bands have a width of size O(N−1/2), consistent with
the proven behaviour for the Gaussian ensemble (Donoho & Tanner 2008b). Such
behaviour at non-Gaussian ensembles goes far beyond current theory. Adamczak et
al. (2009) proved that, for a range of random matrix ensembles with independent
columns, there is a region in the phase diagram where the expected success fraction
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tends to one, but there is no suggestion that this region matches the region for the
Gaussian.

We used standard two-sample statistical inference tools to compare results from
non-Gaussian ensembles with their Gaussian counterparts at the same problem size
and sparsity level. We observed fairly good agreement of the two-sample Z-scores
with the null hypothesis of no difference; however, fitting a linear model to an
array of such Z-scores we were able to identify statistically significant trends of the
Z-scores with problem size and with undersampling fraction δ = n/N . The fitted
trends vary from ensemble to ensemble, decay with problem size, and are consistent
with weak, ‘asymptotic’, universality but not with strong, finite-N , universality.

Our evidence points to a new form of ‘high-dimensional limit theorem’. There is
some as-yet-unknown class of matrix ensembles that yield phase transitions at the
same location as the Gaussian polytope transitions. Delineating this universality
class seems an important new task for future work in stochastic geometry.

5. Appendix: suplementary statistical analysis

We present details of the data analysis.

Gaussian ensemble. We study the basic properties of success probabilites at the
Gaussian ensemble, as a function of δ and ρ.

• Transition zone scaling with N . We quantify the width w(δ,N ;Q) of the
zone where success probability drops from 1 to 0. We verify that our mea-
surement scales as N−1/2.

• Adequacy of Probit/Logit models. We verify that the success probability
varies with ρ approximately as a Probit function Φ((ρ−ρ(δ;Q))/w(δ,N ;Q)).
Here Φ is the Gaussian survival function and w is the transition width. A
logit function fits just about as well.

Analysis of Z-scores. We compare success probabilities at the non-Gaussian en-
sembles to those at the Gaussian using Z-scores arising from two-sample tests for
binomial proportions.

• Methodology of Z-score comparison. We verify that in the null case of no
difference, our methodology indeed finds no difference; we also verify that
in the case of known difference, it indeed finds a difference.

• Scaling of moments with N . We identify nonzero means in the Z-scores,
and show that the scaling law µ(δ,N ;E) = O(1/N1/2) best describes the
data.

• Exceptional ensembles. Two matrix ensembles exhibit substantial lack-of
agreement with the others (e.g. some individual Z-scores as large as 20) for
n small. In effect the location for 50% success in those ensembles obeys a
slight shift away from ρ(δ;Q), of order w. While this is an asymptotically
negligible shift, failing to model it causes a noticeable lack of fit at N = 200
and n small. This lack of agreement is observed to dissipate as n increases.

• Validation ensembles. Two matrix ensembles were studied only after all
other analysis had been completed. Using the models arrived at in the prior
analysis without changing the model form, we found that the same models
describe the validation ensembles adequately, reinforcing the validity of our
analysis.
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All noticeable elements of lack of fit are best accounted for as evidence of effects
consistent with the weak universality hypothesis.

5.1. Experiments conducted.

5.1.1. Framework. Terminology:
• We study n×N random matrices A, N > n.
• A matrix ensemble is a generating device for n × N matrices. We report

here results on the 9 different random matrix ensembles , listed in table 1.
• We generate vectors y = Ax0 where x0 has k nonzeros.
• The nonzeros in x0 are either drawn uniformly from (0, 1) or (−1, 1), des-

ignated as coefficients + and ± respectively.
• The instances (y, A) where the underlying x0 is nonnegative by intent are

then processed using an optimizer to approximately solve (LP ). The in-
stances where the underlying x0 can be of both signs are processed by using
an optimizer to approximately solve (P1). 6

• The optimizer is presented with the problem instance (y, A), but not x0.
• After running the optimizer, we measure ExactRecon, which takes the value

1 when the obtained solution x1, say, is equal to the desired solution x0,
within 6 digits accuracy. It is zero otherwise.

• We conduct M independent replications at each fixed combination of N,n, k,
matrix ensemble, and coefficient type.

• The variable S totals the number of times ExactRecon was 1 in the M
replications. Results are tabulated in a data file with column headings
E N n k M S

Here E is an integer code specifying the suite of problem instances. Such a
suite specifies both the matrix ensemble (eg Gaussian, Bernoulli, Rademacher,
...) and the coefficient type (+ or ±). For each matrix ensemble we consider
both coefficient types.

• For analysis and presentation, we use coordinates δ = n/N , the matrix
‘shape’, and the solution sparsity level ρ = k/n. We generally consider the
success fraction p̂ = S/M .

• The most important structure of the dataset concerns the constant-δ slices,
where n, N , E are held constant and k is varying. The success fraction
p̂(k, n,N ;E) is generally monotone decreasing in such a slice: monotone
decreasing in k for fixed n, N , and E.

• We focus on what is called the LD50 in bioassays, the 50% quantal response
more generally. It is the value of k/n where S/M is expected to be 1/2, for
fixed n,N , E.

5.1.2. Range of experiments. For each suite in table 1 and each combination of
N,n, k, we consider M = 200 different problem instances (y, A) each one drawn
randomly as above. Each suite is compared with a “baseline” of either suite 1 or
2 for the same combination of N,n, k but a larger independent draw of M = 1000
problem instances. We varied the matrix shape δ = n/N , and the solution sparsity
levels ρ = k/n. At problem size N = 1600, we varied n systematically through a
grid ranging from n = 160 up to n = 1440 in 9 equal steps. The ‘signal processing

6In principle, the precise values of the nonzeros do not matter for properties of (P1) and (LP ).
(n.b. For other sparsity seeking algorithms this would not be the case.)
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language’ event ‘exact reconstruction’ corresponds to the ‘polytope language’ event
‘specific k-face of Q is also a k-face of AQ’. In both cases we speak of success,
and we call the frequency of success in M empirical trials at a given (k, n,N) the
success rate. At each combination N,n, we varied k systematically to sample the
success rate transition region from 5% to 95%.

5.1.3. Suites studied. In sections 3-7 we report details about experiments with the
non-Gaussian suites 3 − 12 and 15 − 16 listed in table 1. As it happens, after the
analysis of these suites was conducted, data became available for four other suites,
based on the Hadamard and Rademacher ensembles. The analysis of those suites
will be reported only in section 8. The Rademacher ensemble, suites 19 and 20,
generated data with the same problem sizes and other parameters as suites 3− 12
and 15− 16. Our study of the Hadamard ensemble, suites 13 and 14, is restricted
since only two problem sizes N = 256 and N = 512 were run.

5.2. Behaviour of the Gaussian ensemble. In this section, we restrict attention
to the Gaussian ensemble, suites 1 and 2, and investigate these questions:

• Width of transition zone. How does the width w(δ;N,Q) of the transition
zone at phase transition vary, as a function of N?

• Quantal Response Profile. How does the probability of success vary as a
function of the reduced (ρ − ρ(δ;Q))/w(δ;N,Q)? Where ρ = k/n and
δ = n/N .

• Behaviour of LD50. In what manner does the empirical 50% point of
the quantal response function approach the underlying asymptotic limit
ρ(δ;Q)?

The Gaussian ensemble is an appropriate place to focus attention, because:

• A complete, rigorous understanding of the asymptotic behaviour exists in
the Gaussian case (Donoho & Tanner 2009a); we know that as N → ∞
with δ fixed and ρ fixed away from ρ(δ,Q), the success probability tends to
either zero or 1. So we know that there is a transition zone, and that its
width tends to 0 as N →∞.

• A rigorous set of finite-N bounds has been rigorously proven (Donoho &
Tanner 2008b); we know that the width scales like O(1/

√
n).

Hence, there are rigorous theoretical constraints: we know the phase transition
exists asymptotically and we can constrain its width.

5.2.1. Modelling the quantal response function. In the field of bioassays, the Quan-
tal response function gives the probabiliy of organism failure (eg death) as a function
of dose. In our setting, the analogous concept is the probability of algorithm failure
at a fixed problem size n, N as a function of ρ = k/n, the “complexity dose”.

Considering a constant-δ slice at the Gaussian ensemble, suite 2, we see a roughly
monotone increasing probability of failure as a function of k/n. Figure 7 presents
the fraction of success S/M as a function of k/n, at three incompleteness ratios
δ = n/N .

A Probit model for the dose response states that, for parameters a, and b, the
expected fractional success rate is given by

(5.6) E(S/M) = Φ̄(a(δ) + b(δ)ρ)
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Figure 7. Empirical success fraction at Gaussian ensemble, suite
2, for δ = .1 (black circles), δ = .5 (magenta triangles), δ = .9
(yellow diamonds). Horizontal axis: ρ = k/n; vertical axis: success
fraction S/M . Data result from M = 1000 trials at N = 1600.
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Figure 8. Crude probit modeling of dose response. Rows for
δ = .1, δ = .5, δ = .9. First column: same as in figure 7 for suite
2, N = 1600 and M = 1000. Second Column: data and probit
model. Third Column; Residuals.

where Φ̄ is the complementary normal distribution, and E denotes expectation.
Figure 8 presents a first pass at checking the suitability of such a model. It identifies
empirical estimates of the points where E(S/M) = α for α ∈ {1/4, 1/2, 3/4}. and
then chooses a and b in relation (5.6) to match those. It displays the raw data, the
model curves, and residuals from the model.
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Figure 9. GLM modeling of dose response for suite 2 (N = 1600
and M = 1000) with three links; case δ = .1. First Column:
fit with Logit link. Second Column: fit with Probit link. Third
Column: fit with Cauchyit Link. First Row: Fits. Second Row:
Working Residuals.

It is standard in biostatistics to fit generalized linear models to such data; the
binomial response model is appropriate here. Such models take the form

S ∼ Bin(p(δ, ρ),M)

where the success probability p(δ), after a fixed transformation η() , obeys a linear
model:

η(p(δ, ρ)) = a(δ) + b(δ)ρ;

the function η is called the link function.
We considered three standard link functions: the logit, probit and cauchyit links.

Figure 9 presents fitted models and what the statistics analysis package R calls the
working residuals for these three links. In fact the best loglikelihood is achieved
among the three at the probit link, but there is a large residual at the most extreme
response; it seems the probit link goes to zero too fast (this is not unexpected, owing
to the ’thin tails’ of the normal distribution, and also owing to the finite-N large
deviations analysis in Donoho and Tanner (2008b)). The logistic link is nearly as
good in deviance or likelihood senses, makes sense on theoretical grounds and gives
more balanced residuals. (Note however, that as figure 8 showed, the Probit fit is
adequate as long as we look at ordinary rather than the more statistically sensitive
working residuals.)

We used R to fit these models; this has the advantage of automatically providing
standard inferential tools – confidence bounds for a and b and goodness-of-link tests.

5.2.2. Behaviour of LD50. In bioassays, the LD50 is the dose that corresponds to
50/50 chance of failure. This can be estimated from binomial response data in two
ways.
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δ 200 400 1600
0.2 0.0114 0.00410 0.001799
0.3 0.0079 0.00476 0.001179
0.4 0.0043 0.00444 0.001037
0.6 0.0053 0.00198 0.000760
0.7 0.0048 0.00380 0.001649
0.8 0.0082 0.00280 0.001171

Table 3. Difference between empirically estimated LD50 of suite
2 with M = 1000 samples and the corresponding asymptotic limit
ρ(δ;C)

Quantity 200 400 1600
median N1/2(LD50− ρ(δ)) 0.094 0.079 0.047
median N(LD50− ρ(δ)) 1.324 1.581 1.881

Table 4. Median across δ of the scaled difference between empir-
ically estimated LD50 of suite 2 with M = 1000 and the corre-
sponding asymptotic limit ρ(δ;C)

The first, ‘nonparametric’ method finds the largest ratio k/n where S > M/2 for
a given n, N and E. We found a slight refinement useful: we fit a linear spline to
the success ratios and solved for the (smallest) value of δ where the spline crosses
50%.

Using this method, we obtained table 3, which presents, for suite 2 and M =
1000, the difference between the estimated LD50 and the theoretical large N limit.

Evidently, the LD50 is approaching the expected phase transition with increasing
N . To quantify this effect, we have table 4, which shows that the LD50 typically
approaches its limit at roughly the rate 1/N .

5.2.3. Transition zone width. We can define the α-width of the transition zone as
the horizontal distance between p = α and p = 1− α on the dose-response.

We again can measure this nonparametrically and parametrically. We present
here a nonparametric analog based on fitting splines to the empirical success frac-
tions and measuring the α = 0.1 and 1 − α = 0.9 quantile locations. We then
normalize by the corresponding distance on the standard Probit curve

w = w0.1 =
q0.9 − q0.1

Φ−1(0.9)− Φ−1(0.1)
.

Table 5 presents values of
√

N · w(δ,N) for suite 2 with M = 1000.

5.3. Methodology of Z-score comparison. How does the methodology of Z-
score comparison work on cases where we know the ground truth – both where we
know there is no difference and we know there is an asymptotic difference? For each
of the suites in table 1 the suite with M = 200 is compared against suite 1 or 2 with
M = 1000 independent problem instances for the same values of N,n, k. Suites 1
and 2 with M = 1000 form the baseline against which all Z-scores are calculated.
Unless specified otherwise, suites with the same coefficient sign are compared; for
example suite 9 is compared with suite 1 and suite 16 is compared with suite 2.
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δ N = 200 N = 400 N = 1600
0.2 0.7277 0.6691 0.6367
0.3 0.6567 0.6535 0.6780
0.4 0.6530 0.6464 0.6240
0.6 0.6328 0.6663 0.6420
0.7 0.6413 0.6690 0.6384
0.8 0.6708 0.6841 0.6809

Table 5. Scaled values
√

Nw(δ;N) for suite 2 with M = 1000.
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Figure 10. PP Plots of Z-scores comparing success frequencies
under one set of realizations from the Gaussian matrix ensemble
(M = 200) with an independent realization of success frequencies
from the Gaussian ensemble (M = 1000). Panel (a): suite 2. Panel
(b): suite 1.

5.3.1. Under a true null hypothesis. When the two problem settings being com-
pared are simply replications of the same underlying conditions, we can be sure
that H0: no difference is true. We compare here suites 1 and 2 with M = 200
against the baseline experiments of suites 1 and 2 with M = 1000. This follows the
same procedure as will be conducted later when comparing non-Gaussian ensembles
against the baseline.

Figure 10 Panel(a) presents the bulk distribution of Z-scores for suite 2; Panel (b)
presents the bulk distribution of Z-scores for suite 1. The figure presents PP-plots:
the fraction of Z-scores exceeding a threshold versus the fraction to be expected
at the standard Normal. If the Z-scores were exactly standard normal, these plots
would be close to the identity line, which is, in fact what we see.

In quantitative terms, we have table 6.
Table 6 shows that of 180 Z-scores associated with comparisons of suite 1, 170

were less than 2 in absolute value; for 94.4 % – very much in line with an assumed
standard N(0, 1) null distribution. It also shows that of 181 Z-scores associated
with comparisons of suite 2, 175 were less then 2 in absolute value; for 96.7 % – very
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Suite 1: Gaussian ensemble, positive coefficients
N #{i : |Zi| < 1} #{i : |Zi| < 2} #{i : |Zi| < 3} #
200 29/54 49/54 54/54 54
400 40/63 60/63 63/63 63
1600 45/63.6 61/63 63/63 63

Suite 2: Gaussian ensemble, coefficients of either sign
200 41/55 53/55 55/55 55
400 38/63 60/63 63/63 63
1600 42/63 62/63 63/63 63

Table 6. Occurrences of Z-scores under the true null hypothesis.
Suites 1 and 2 self comparison of S/M with M = 200 against the
basline suites 1 and 2 with M = 1000. Cell contents: Observed
Counts/Total Counts.

Suite 1 Suite 2
N a b
200 0.127 -0.242
400 -0.103 0.451
1600 0.133 -0.002

N a b
200 0.002 0.102
400 0.109 0.445
1600 -0.166 0.166

Table 7. Linear fits to Z-scores Z ∼ a + bδ under the true null
hypothesis. Suites 1 and 2. a intercept; b slope

much in line with an assumed standard N(0, 1) null distribution. We thus see that
under a true null hypothesis, our Z-scores behave largely as if they were N(0, 1).
This is an observation that needed to be checked, since Z-scores, when constructed
in the way we have done so here, only are known to have an asymptotically normal
distribution.

Figures 5 and 6 presented Z-scores in scatterplots of Z(k, n,N ;E) versus δ com-
paring non-Gaussian ensembles with Gaussian ensembles; what happens when we
have a true null hypothesis?

Figure 11 (a) and (b) presents the Z-scores for suites 1 and 2 respectively with
fitted lines modelling the dependence on δ. In principle, the Z-scores all have mean
zero and there is no expected trend. However, owing to sampling fluctuation, we
obtain nonzero intercepts and slopes. Table 7 shows the results that obtained in
this truly null case. We learn from this that fitted intercepts and slopes of about the
size indicated in the table can be viewed as consistent with a true null hypothesis.

5.3.2. Under a true alternative hypothesis. Is our methodology powerful? Can it
detect any differences from null?

To study this question, we considered a simple and blatant mismatch: compare
suite 1 with M = 200 against the suite 2 with the baseline M = 1000.

The baseline, suite 2, should reflect a transition near ρ(δ;C) while the comparison
group, suite 1, should reflect a transition near ρ(δ;T ). As these two curves are very
different we should see this reflected in the Z-scores. And we do. Figure 12 shows
the QQ-plot, which is noticeably far from the identity line.
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Figure 11. Z-scores under true null hypothesis, and linear fit.
Panel (a): suite 1. Panel (b): suite 2.
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Figure 12. QQ plot of Z-scores comparing success frequencies of
suite 1 (M = 200) to an independent realization of success frequen-
cies from suite 2 (M = 1000). In this plot, the M = 200-based
frequencies describe success in solving (LP ) when the nonzeros in
x0 are positive, the M = 1000-based frequencies describe success
in solving (P1) when the nonzeros in x0 are of either sign. The
two ensembles are proven to have different phase transitions. The
values on the Y axis are far away from 0.

5.4. Bulk behaviour of Z-scores. In figures 13-15 we present a sequence of QQ
plots showing the bulk distribution of Z-scores for suites 3−12, 15−16 at N = 200,
400 and 1600. In each plot the identity line is also displayed; if the Z-scores had
truly a standard normal distribution, they would oscillate around this line.

While in most suites we see a good match between the Z-scores and the standard
normal already at N = 200, it is not until N = 1600 when every ensemble seems to
yield approximately N(0, 1) scores. Even then, suites 11 and 12 (Ternary (1/10))
exhibit some noticeable deviations. These effects are apparent for small n. In
fact, at small n, trivial linear dependencies are found among the columns of typical



28 DAVID L. DONOHO AND JARED TANNER

Figure 13. Z-scores at N = 200 for suites 3-12,15-16.
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Figure 14. Z-scores at N = 400 for suites 3-12,15-16.

random A at these ensembles. Such linear dependencies force affine dependencies
which force lost polytope faces. Consequently, the observed S/M will be decreased,
this effect is discussed further in §5.7.

This is consistent with our conclusions in the main text that strict finite-N
universality does not hold, but a weaker notion of asymptotic universality does
hold.

5.5. Linear modeling of the Z-scores. The QQ Plots of Z-scores in figures 13-
15 show that suites 11, 12, 15, and 16 (the highly sparse matrix suites) behave
somewhat differently than other suites.

We now report results excluding those suites, and focus instead on suites 3-10.
The excluded suites 11− 12, 15− 16 will be discussed in §5.7.

In the main text we reported fits explaining the observed Z-scores using two
models of the form,

(5.7) µ(δ;N,E) = α(N,E) + β(N,E)(δ − 1/2),
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Figure 15. Z-scores at N = 1600 for suites 3-12,15-16.

where

(5.8) α(N,E) = α0(E) + α1(E)/N1/2, β(N,E) = β0(E) + β1(E)/N1/2.

We considered two such models, one with the restrictions α0 = 0 and β0 = 0, and
one without.

We first report results using the submodel α0 = 0 and β0 = 0, and later the
full model, without the restriction. The display below shows the output of the R
linear model command for the restricted model. The symbol de denotes δ − 1/2
and the symbol probSize denotes 1/

√
N . The output lists interaction terms such

probSize:En. It turns out that α1(N,E) is the sum of probSize and probSize:En.
Similarly β1(N,E) is the sum of probSize:de and probSize:En:de.
lm(formula = Z ~ probSize * E * de - E * de - E - de - 1, subset = subE)

Residuals:
Min 1Q Median 3Q Max

-3.966108 -0.703283 -0.003336 0.691872 4.309933

Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

probSize -1.7714 0.5752 -3.080 0.00208 **
probSize:E3 2.5960 0.7955 3.263 0.00111 **
probSize:E4 -6.1540 0.8141 -7.560 4.40e-14 ***
probSize:E5 3.3350 0.7972 4.183 2.90e-05 ***
probSize:E6 -9.0306 0.8128 -11.110 < 2e-16 ***
probSize:E7 -0.6122 0.7957 -0.769 0.44168
probSize:E8 -4.8878 0.8117 -6.022 1.79e-09 ***
probSize:E9 0.4795 0.7964 0.602 0.54715
probSize:E10 NA NA NA NA
probSize:de 32.4608 2.2249 14.590 < 2e-16 ***
probSize:E4:de -13.3427 3.0552 -4.367 1.27e-05 ***
probSize:E5:de 38.3394 3.1584 12.139 < 2e-16 ***
probSize:E6:de -25.7357 3.0616 -8.406 < 2e-16 ***
probSize:E7:de -19.7373 3.1520 -6.262 3.96e-10 ***
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probSize:E8:de -17.3618 3.0514 -5.690 1.31e-08 ***
probSize:E9:de -25.3606 3.1504 -8.050 9.22e-16 ***
probSize:E10:de -30.1162 3.0533 -9.863 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.042 on 9980 degrees of freedom
Multiple R-Squared: 0.1801,Adjusted R-squared: 0.1788
F-statistic: 137 on 16 and 9980 DF, p-value: < 2.2e-16

One sees that the coefficients in this model are significant, and that the residual
variance is roughly 1, as is to be expected of proper Z-scores. (The reduction in
sum of squares in the null case due to fitting 16 degrees of freedom would negligible
and has no significant bearing on our evaluation of the adequacy of residuals).

In contrast, here is the report on the fit of the full model, where there is no
restriction α0 6= 0 and β0 6= 0.

Call:
lm(formula = Z ~ probSize * E * de, subset = subE)

Residuals:
Min 1Q Median 3Q Max

-3.986320 -0.704510 -0.003003 0.688163 4.288311

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.009221 0.088655 -0.104 0.917164
probSize 0.977059 1.560776 0.626 0.531324
E4 0.122821 0.129093 0.951 0.341418
E5 0.041659 0.126111 0.330 0.741152
E6 -0.081222 0.129162 -0.629 0.529471
E7 0.046731 0.125177 0.373 0.708921
E8 -0.083599 0.129377 -0.646 0.518183
E9 -0.016288 0.125517 -0.130 0.896752
E10 0.086785 0.128709 0.674 0.500151
de -0.064338 0.362145 -0.178 0.858995
probSize:E4 -10.772603 2.266890 -4.752 2.04e-06 ***
probSize:E5 0.054531 2.217975 0.025 0.980386
probSize:E6 -10.292009 2.269018 -4.536 5.80e-06 ***
probSize:E7 -3.980349 2.204676 -1.805 0.071040 .
probSize:E8 -6.119916 2.270653 -2.695 0.007046 **
probSize:E9 -1.849487 2.209092 -0.837 0.402491
probSize:E10 -4.025803 2.264442 -1.778 0.075461 .
probSize:de 33.518507 6.351755 5.277 1.34e-07 ***
E4:de 0.454335 0.506908 0.896 0.370121
E5:de -0.292063 0.518197 -0.564 0.573030
E6:de 0.093784 0.505083 0.186 0.852699
E7:de 0.204607 0.516213 0.396 0.691847
E8:de 0.721077 0.506570 1.423 0.154637
E9:de 0.196951 0.515310 0.382 0.702322
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E10:de -0.038394 0.505668 -0.076 0.939478
probSize:E4:de -20.696043 8.826233 -2.345 0.019055 *
probSize:E5:de 43.119875 9.068423 4.755 2.01e-06 ***
probSize:E6:de -27.292071 8.811615 -3.097 0.001958 **
probSize:E7:de -23.088609 9.031837 -2.556 0.010592 *
probSize:E8:de -29.097174 8.824071 -3.297 0.000979 ***
probSize:E9:de -28.591599 9.022533 -3.169 0.001535 **
probSize:E10:de -29.477628 8.814444 -3.344 0.000828 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.043 on 9964 degrees of freedom
Multiple R-Squared: 0.1751,Adjusted R-squared: 0.1726
F-statistic: 68.25 on 31 and 9964 DF, p-value: < 2.2e-16

Every fitted term associated to α0 or β0 is not statistically significant even at
the 0.10 level. In contrast, coefficients associated to α1 or β1 terms are mostly
significant.

The adjusted R2 of the unrestricted model is actually worse than the adjusted
R2 of the restricted model. The standard analysis of variance table produced by
the R software anova command gives:
Model 1: Z ~ probSize * E * de - E * de - E - de - 1
Model 2: Z ~ probSize * E * de

Res.Df RSS Df Sum of Sq F Pr(>F)
1 9980 10843
2 9964 10830 16 13 0.7467 0.7475

The improvement in variance explained using the unrestricted model is definitely
not significant, as the P value exceeds 1/2.

This lack of significance justifies our finding in the main text that weak univer-
sality holds, at least for suites 3-10.

5.6. Justification of scaling model with exponent 1/2. We fit models

µ(δ;N,E) = α(N,E) + β(N,E)(δ − 1/2),

where

α(N,E) = α0(E) + α1(E)/N1/2, β(N,E) = β0(E) + β1(E)/N1/2.

in words we are saying that, within one suite, the means vary as a function of δ
at a given sample size, and that across sample sizes there is a root-n scaling of the
means as a function of N .

The root-n scaling can be motivated both theoretically and empirically.
We first sketch a theoretical motivation. Donoho & Tanner (2008b) proved that,

for δ fixed, the success probability for the Gaussian ensemble p1(A) ∈ (0, 1) has
a transition zone near the asymptotic phase transition ρ(δ;Q) of root-N width.
Namely, we showed that for ρ below the asymptotic transition, p1(A) ≤ C ·
exp(−(ρ− ρ(δ;Q))/w(δ,N,Q)), where the width w � N−1/2.

From the viewpoint of probability theory, a width w = O(N−1/2) would be
typical when describing the frequency of success of an event among O(N) weakly
dependent indicator variables. Perhaps there is some such interpretation here;
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power γ
coef 1.50 1.25 1.00 0.75 0.50 0.33 0.25
intercept 0.8477 0.8814 0.9118 0.9482 0.9760 0.9533 0.9627
slope 0.8413 0.8676 0.9122 0.9343 0.9822 0.9626 0.9491

Table 8. R2 of fits in models (5.9) and (5.10). The exponent
γ = 1/2 gives the best fit in both cases

although the rigorous proof in Donoho & Tanner (2008b) does not provide one.
If this were the case, it would not be surprising for the hypothesized underlying
indicator variables to have success probabilities differing by order 1/

√
N at the non-

Gaussian ensembles from the corresponding ones at the Gaussian ensembles; such
discrepancies in limit theorems are common. This would generate N−1/2 scaling in
the mean Z-scores between the Gaussian and other ensembles.

We now turn to empirical motivation. We fit model (5.9) to each suite and sample
size separately, obtaining the full collection of coefficients α(N,E) and β(N,E) for
N = 200, 400, and 1600. We then fit an intercept-free linear model to the collection
of fitted intercepts:

(5.9) α(N,E) = α1(E, γ)N−γ + error,

and another to the slopes:

(5.10) β(N,E) = β1(E, γ)N−γ + error.

Table 8 presents the R2 of the different fitted models. Evidently exponent γ = 1/2
gives the best fit both to intercepts and to slopes.

We don’t see an easy way to attach statistical significance to this finding, using
standard software.

This fitting exercise also shows that the exponent γ = 1/2 fits well enough to
make the case for α0 6= 0 and β0 6= 0 very weak. We fit two joint models to two
datasets, one containing all the fitted intercepts α̂(N,E) and the other containing
all the fitted slopes β̂(N,E) from the same collection of ensembles and the standard
problem sizes N = 200, 400, 1600.

The first joint model for absolute intercepts included terms that do not vanish
as N grows large

(5.11) |α̂(N,E)| = γ0(E) + γ1(E)/N1/2 + error.

The second joint model did not include such terms:

(5.12) |α̂(N,E)| = γ1(E)/N1/2 + error.

The traditional t-statistics associated with γ0 terms were nonsignificant with one ex-
ception; this must be treated as unimpressive owing to multiple comparison effects.
In contrast, the majority of α1 terms were significant. The analysis of variance
comparing the two fits gave an F statistic of 1.53 on 12 and 23 degrees of freedom
with a nominal P -value of 0.2394. In short the larger model which includes a con-
stant term independent of N explains little. Although this cannot be used with
the usual interpretation it does show that any tendency to not vanish must be very
weak.
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Figure 16. Residuals from scaling hinged fit, N = 200. Pan-
els: Suites 11,12,15,16. Note the apparent increase in variance of
residuals at small δ

The first joint model for slopes included intercept terms:

(5.13) β̂(N,E) = β0(E) + β1(E)/N1/2 + error

The second joint model did not include intercept terms:

(5.14) β̂(N,E) = β1(E)/N1/2 + error

The traditional t-statistics associated with β0 terms were nonsignificant with one
exception; this again must treated as unimpressive owing to multiple comparison
effects. In contrast, the majority of β1 terms were significant. The analysis of
variance comparing the two fits gave an F statistic of 1.35 on 12 and 23 degrees of
freedom with a nominal P -value of 0.30. Again the larger model which includes a
constant term independent of N explains little. Although this cannot be used with
the usual interpretation it does show that any tendency to not vanish must be very
weak.

5.7. Exceptional suites. In §5.5 we excluded suites 11,12,15,16 from analysis.
Our decision was based on the fact that three of these – 11,12,15 – were to the
naked eye quite different than the others, by two criteria:

• Behaviour of the bulk distribution of Z-scores (see figures 13-15; panels in
the lower row)

• Behaviour of the plots of Z-scores versus δ.
We grouped suite 16 with these based on the fact that the underlying matrix en-
semble was the same as suite 15; they differ only in properties of the solution
coefficients.

5.7.1. Bulk distribution of Z-scores. We remark that although the naked eye per-
ceives differences in the Z-scores for δ small, these suites are overall consistent with
weak universality. As N increases, at each fixed δ, in each suite, the distribution of
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Figure 17. Residuals from scaling hinged fit, N = 1600. Pan-
els: Suites 11,12,15,16. Note the apparent curvilinearity in mean
residuals at small δ.

Z-scores gets closer to N(0, 1). For example, the evident discrepancies that exist
for small δ in the QQ Plots of Z-scores at N = 200 are not apparent for large δ;
moreover, the discrepancies are dramatically attenuated by N = 1600.

5.7.2. Modelling of Z-scores. A major part of the exceptional behaviour of these
suites is the apparent nonlinear dependence of mean Z-score on δ. We have seen
that for suites 3-10, an adequate description is provided by linear dependence on
δ. However, for the exceptional suites this is no longer the case. Plots of residual
Z-scores versus δ show that the exceptional suites exhibit nonlinear dependence on
δ; typically downward sloping at δ < .5 and no sloping or upward sloping at δ > .5.

Mild nonlinearity in µ can be modelled through hinged models:

µ(N,E) = α(N,E) + β(N,E)(δ − 1/2) + κ(N,E)(1/2− δ)+.

These model δ dependence as a linear spline with knot at δ = 1/2. As before we
can model κ’s dependence on N in the same way as we have done with α and β:

κ(N,E) = κ0(E) + κ1(E)/
√

N.

Such hinged models are to be preferred over the linear models in the 4 exceptional
suites.

We first present the R session transcript of the linear fit with
√

N scaling terms
but no constant terms:

µ(N,E) = α1(E)/
√

N + β1(E)/
√

N · (δ − 1/2)

Call:
lm(formula = Z ~ probSize * E * de - E * de - E - de - 1, subset = subX)

Residuals:
Min 1Q Median 3Q Max
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-6.3990 -1.0153 -0.1640 0.6940 18.1441

Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

probSize 2.127 1.262 1.685 0.092 .
probSize:E11 34.828 1.584 21.984 <2e-16 ***
probSize:E12 46.890 1.607 29.182 <2e-16 ***
probSize:E15 17.804 1.743 10.214 <2e-16 ***
probSize:E16 NA NA NA NA
probSize:de -138.228 3.848 -35.923 <2e-16 ***
probSize:E12:de 3.747 5.274 0.710 0.477
probSize:E15:de 159.013 6.410 24.806 <2e-16 ***
probSize:E16:de 128.493 6.065 21.186 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.854 on 4736 degrees of freedom
Multiple R-Squared: 0.5366,Adjusted R-squared: 0.5358
F-statistic: 685.5 on 8 and 4736 DF, p-value: < 2.2e-16

In this fit, there is substantial lack of fit: the standard deviation of residuals,
1.854, is dramatically larger than 1.0 (the fit for suites 3-10 gave instead a residual
standard deviation close to 1).

We fit the hinged model with
√

N scaling:

µ(N,E) = α1(E)/
√

N + β1(E)/
√

N · (δ − 1/2) + κ1(E)/
√

N · (1/2− δ)+

The R transcript follows:

Call:
lm(formula = Z ~ probSize * E * de + probSize * E * dea2 - E *

de - E * dea2 - 1, subset = subX)

Residuals:
Min 1Q Median 3Q Max

-9.00131 -0.86664 -0.07468 0.71868 15.83998

Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

probSize -2.497 1.904 -1.311 0.189834
probSize:E11 8.493 2.557 3.322 0.000901 ***
probSize:E12 24.982 2.597 9.619 < 2e-16 ***
probSize:E15 7.455 2.677 2.785 0.005369 **
probSize:E16 NA NA NA NA
probSize:de -10.276 7.000 -1.468 0.142203
probSize:dea2 301.622 14.237 21.186 < 2e-16 ***
probSize:E12:de -31.004 9.391 -3.302 0.000969 ***
probSize:E15:de 87.995 10.234 8.599 < 2e-16 ***
probSize:E16:de 15.900 9.630 1.651 0.098777 .
probSize:E12:dea2 -50.774 20.168 -2.518 0.011850 *
probSize:E15:dea2 -80.204 26.626 -3.012 0.002606 **
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probSize:E16:dea2 -232.594 26.649 -8.728 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.706 on 4732 degrees of freedom
Multiple R-Squared: 0.6081,Adjusted R-squared: 0.6071
F-statistic: 611.9 on 12 and 4732 DF, p-value: < 2.2e-16

Here dea2 denotes (1/2 − δ)+, so κ terms are associated with dea2, in an im-
promptu notation: κ(N,E15) = probSize:E15:dea2 + probSize:dea2 /

√
N .

The key points to observe here are: (1) the individual coefficients associated
with hinge terms are significant; and (2) the adjusted R2 (0.6071) is substantially
higher than it was for a linear fit (0.5358). The analysis of variance comparing the
hinged model with the linear model gives an F statistic of 113 on 4720 and 8 DF,
which is wildly significant; see the transcript:
Model 1: Z ~ probSize * E * de + probSize * E * dea2
Model 2: Z ~ probSize * E * de
Res.Df RSS Df Sum of Sq F Pr(>F)

1 4720 13466.6
2 4728 16055.4 -8 -2588.8 113.42 < 2.2e-16 ***

In the above fits we considered only models imposing N−1/2 scaling on µ. Allow-
ing terms which do not decay in N does not improve the fit. The following transcript
shows fits of a a model for mean Z-score in suite E containing non-scaling terms:
µ(N,E) = µ0(N,E)+µ1(N,E)/

√
N ; the fits shown in the paragraphs immediately

above correspond instead to restrictions µ0 = 0.
Call:
lm(formula = Z ~ probSize * E * de + probSize * E * dea2, subset = subX)

Residuals:
Min 1Q Median 3Q Max

-9.28404 -0.79999 -0.02881 0.74525 15.75879

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.03677 0.26074 0.141 0.887848
probSize 5.25575 4.68185 1.123 0.261674
E12 -0.68992 0.37841 -1.823 0.068333 .
E15 0.13874 0.38490 0.360 0.718529
E16 -0.17611 0.38956 -0.452 0.651242
de 0.05261 1.12637 0.047 0.962751
dea2 -4.81687 2.26618 -2.126 0.033593 *
probSize:E12 27.98270 6.76604 4.136 3.6e-05 ***
probSize:E15 -3.43537 6.93196 -0.496 0.620211
probSize:E16 -5.42887 6.98430 -0.777 0.437023
probSize:de -10.66394 19.77908 -0.539 0.589807
E12:de 2.13317 1.52864 1.395 0.162940
E15:de -0.49034 1.61080 -0.304 0.760830
E16:de 0.14309 1.59771 0.090 0.928643
probSize:dea2 380.64608 40.15413 9.480 < 2e-16 ***
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E N cases mean sd med mav
11 200 654 0.0713 2.58 -0.0432 0.942
11 400 214 -0.210 1.87 -0.230 0.863
11 1600 364 -0.115 1.06 -0.0651 0.625
12 200 694 0.0528 2.39 0.055 0.92
12 400 220 -0.114 1.96 -0.293 0.871
12 1600 383 -0.139 1.10 -0.181 0.798
15 200 546 0.134 1.32 0.0457 0.723
15 400 191 -0.38 1.30 -0.349 0.868
15 1600 337 -0.185 1.08 -0.213 0.734
16 200 611 0.0615 1.07 0.0220 0.718
16 400 196 -0.176 1.01 -0.257 0.681
16 1600 334 -0.112 1.02 -0.132 0.66

Table 9. Group statistics of residuals from the hinged scaling
model, grouped by sample size

E12:dea2 6.96907 3.23697 2.153 0.031372 *
E15:dea2 -13.34798 4.12398 -3.237 0.001218 **
E16:dea2 -0.58285 4.25568 -0.137 0.891070
probSize:E12:de -66.26910 26.69975 -2.482 0.013099 *
probSize:E15:de 96.38232 28.49783 3.382 0.000725 ***
probSize:E16:de 12.93573 27.73609 0.466 0.640961
probSize:E12:dea2 -165.95925 57.18373 -2.902 0.003723 **
probSize:E15:dea2 141.75943 73.66213 1.924 0.054358 .
probSize:E16:dea2 -225.04810 74.88419 -3.005 0.002667 **
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.689 on 4720 degrees of freedom
Multiple R-Squared: 0.5418,Adjusted R-squared: 0.5395
F-statistic: 242.6 on 23 and 4720 DF, p-value: < 2.2e-16

The key points to observe are: (1) The standard error of residuals is not mean-
ingfully improved by allowing the extra explanatory terms: it drops from 1.706 for
the N−1/2 scaling model to 1.689 for the full model; and (2) The adjusted R2 is
worse for the full model than it is for the scaling model. At the level of individual
effects, the bulk of the non-scaling terms are not significant, and the scaling hinge
terms remain significant. We view the few significant non-scaling terms as possibly
caused by the significant modeling error that still remains: i.e. since the residual
standard error, at about 1.7, is about 70% higher than it would be if everything
were explained in a satisfactory way.

The next table summarizes the residuals from the hinged scaling model, grouped
by suite and N . The summaries include group means, standard deviations, medians
and median absolute values.

Suite 16 is adequately explained, since the standard deviation is fairly close to
1.00 at each N .

In all suites the residual standard deviation is decreasing with N , and in every
case the residual standard deviation is less than 1.10 at N = 1600. In our view
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Figure 18. Z-scores for suite 12, N = 200 plotted versus ρ = k/n
at each value of δ = n/N . Vertical bars indicate asymptotic phase
transition and nominal width of the transition zone.
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Figure 19. Z-scores for suite 12, N = 1600 plotted versus ρ =
k/n at each value of δ = n/N . Vertical bars indicate asymptotic
phase transition and nominal width of the transition zone.

this, together with the structure of the scaling model, merits the conclusion that
these random matrix ensembles agree with the Gaussian ensemble for large n.

However, there is noticeable structure at small n. The key pattern visible in the
table is the tendency of residuals to be positive at small n.

Some further structure is visible in the δ variable; figures 16 and 17 show that
at N = 200 there is a dramatic ’blowup’ in variance at small δ, which has largely
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Figure 20. Z-scores for suite 12 plotted versus ρ = k/n at 9
different values of δ = n/N , together with fitted mean shift model.
Red Crosses portray the displaced LD50 model.

disappeared at the larger problem size N = 1600. They also show that suite
16 is already well-behaved at N = 200, and the ”variance blowup” is largely a
phenomenon of suites 11 and 12. Finally, at N = 1600 one can see indications of
curvilinear structure, so evidently the hinged model can only be regarded as an
approximation.

As it turns out, the ”variance blowup” is not a variance phenomenon at all; it is
caused by significant unmodeled structure in the means as a function of ρ = k/n.
Figure 18 shows the Z-scores at suite 12, for problem size N = 200. The Z-scores
are quite large and nonrandom, indicating significant unmodelled structure.

On the other hand, this unmodeled structure is largely a phenomenon of small
problem size. Figure 19 shows the Z-scores at suite 12, now for problem size
N = 1600. The Z-scores are not so large and much more random, indicating that
unmodelled structure is less of a problem, except at small δ.

The unmodelled structure can be largely accounted for as a displacement of the
LD50 by about 1 transition width at N = 200. The asymptotic phase transition is
at ρ(δ;Q); if we assume that in suite 12 the LD50 is not at ρ(·;Q) but instead at
ρ† = ρ(δ;Q)−w(δ;N,Q), and we assume a probit link, we can expect the Z-scores
to have a mean

µ ∝ φ((ρ− ρ†)/w)/w,

where φ denotes the standard Gaussian density.
Figure 20 fits this model to the Z-scores at suite 12, for sample size N = 200. It

accounts for most of the structure in the Z-scores at these values of δ.

5.7.3. Understanding the exceptional ensembles. When N is small and δ is small,
the exceptional ensembles have LD50’s displaced substantially below the asymp-
totic phase transition, It also seems that if we keep δ fixed and increase N , such
displacement eventually disappears.
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It seems to us that one can understand this phenomenon as a transient effect of
random sampling in discrete structures. To explain this, note that when ”success”
is declared in our computations, this means that the image of a specific k-face F
of the polytope Q ‘survives’ projection under A, i.e. AF is a face of AQ. (Here
of course Q is either TN−1 or CN , see the main text; and the preceding statement
deserves and requires rigorous proof; it receives such proof in our other papers). In
particular that there is no pair (x0, x1) both in F with Ax0 = Ax1. But then there
is no vector v supported on those k + 1 sites with Av = 0.

On the other hand, if there exist vectors supported on k + 1 sites that belong to
this null space, then there definitely will be k-faces F that get lost under projection.

Let Ek,n,N denote the event that there exist k + 1-sparse vectors in the null
space of A. Then when event Ek,n,N occurs there will be a k-face of Q that does
not survive projection.

For a Gaussian random matrix A, with probability one the columns of A are
in general position, and so P (Ek,n,N ) = 0 provided k < n. However, for the
exceptional ensembles P (Ek,n,N ) > 0 even for quite small k.

The Ternary (1/10) and Expander (1/15) ensembles generate highly sparse ma-
trices A. Particularly when n is small, we have observed that these can have sparse
solutions in their null space; that is, Ek,n,N can have substantial probability.

It may help some readers to know we are effectively discussing the sparsity of the
sparsest vector in the null space of A; this is often denoted spark(A) (Donoho &
Elad, 2003). For Gaussian random matrices A, spark(A) = n, while for the Ternary
and Expander ensembles, we find that spark(A) has a good chance of being much
smaller than n.

Dossal et al. (2009) have proposed a greedy algorithm which can be used to find
sparse vectors in the null space of a matrix. It provides an heuristic upper bound
spark+(A) on the spark of a matrix . Applying this algorithm to random draws of
Ternary (1/10) and Expander (1/15) we observe sparse vectors satisfying Az = 0;
ranges of these observed sparsity levels are recorded in columns 2 and 3 of table 10.

The sparsity levels recorded in columns 2 and 3 of table 10 indicate clearly that
Ek,n,N can occur for quite small k, but they do not indicate the size of P (Ek,n,N ) or
give any other information about the prevalence of these sparse null space vectors.
Columns 4-9 of table 10 indicate the empirical bound spark+(A) for suites 1-2,11-
12,15-16 with S/M closest to 50%. For Ternary (1/10) with N = 200 and n ≤ 60
it is common to draw matrices which contain a column of all zeros, allowing for 1-
sparse vectors in the null space. In such cases, spark(A) = 1, which is dramatically
smaller than n, what we would see with the Gaussian ensemble.

With such easy counterexamples to uniqueness it now seems remarkable that
the typical case, as measured by the observed LD50, is as high as we observed.
This may be explained by the fact that typically, the bad k-sets do not intersect
the particular k-set we are interested in (i.e. the one supporting the solution of
interest).

For the Expander ensemble with N = 200 and n ≤ 40 there are vectors in
the null space with only 6 nonzeros, and null space vectors with more than 6
nonzeros become common; as a consequence, it becomes increasingly common that
of the M = 200 problem instances presented to (P1) and (LP) for each value of k
moderately larger than 6 there will be vectors x1 which are sparser than x0 and yet
which satisfy Ax1 = Ax0 = y.
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(N,n) Ternary (1/10) Expander 1 2 11 12 15 16
(200,20) 1 1 5 4 2 1 2 1
(200,30) 1 5-14 9 7 5 4 3 3
(200,40) 1 6-20 13 10 11 8 9 8
(200,50) 1 19-34 19 14 16 12 17 13
(200,60) 1-61 16-41 25 18 23 16 22 18

(1600,160) 1-61 1-61 39 30 38 29 40 31
Table 10. Sparse vectors in Nullspace(A). Columns 2 and 3
of table 10 indicate minimal sparsity levels of vectors z obeying
Az = 0 with A drawn from ensembles Ternary (1/10) and Ex-
pander (1/15). Columns 4-9 indicate the value of the empirical
upper bound spark+(A) for suites 1-2,11-12,15-16 with S/M clos-
est to 50%.

We observe that the LD50 for suites 15-16 is significantly displaced below the
asymptotic value for this range of (N,n). Suites 15-16 are observed to have sim-
ilar values of LD50 for this range of (N,n). Although these LD50s are similarly
displaced, the effect is more noticeable in the Z-scores of suite 15 due to its being
compared with suite 1 which has a markedly higher LD50 than does suite 2 (which
suite 16 is compared against).

If we keep n/N and k/n constant, and k/n small, but let N increase it seems
that the probability P (Ek,n,N ) tends to zero rapidly. For N = 1600 and δ = 0.1,
the observed LD50 values for these exceptional ensembles are within 1 of those
observed for the Gaussian suites. We also observe that for N = 1600 and n = 160
we are unable to find null space vectors with fewer than 161 nonzeros. This suggests
the following interpretation of what is happening: for each (δ, ρ) there is a transient
effect, such that as N increases, initially it is most likely that spark(A) is less than
ρ · n, but for sufficiently large N , it becomes likely that spark(A) ≈ n.

Under our interpretation, the driving effect behind the exceptional ensembles
is the phenomenon that for small N the matrix A has its columns not in general
position; and, for fixed δ = n/N the chance of observing this phenomenon decays
rapidly with increasing problem size N .

5.8. Validation ensembles: Rademacher and Hadamard. The computer runs
reported here took place over a substantial interval of calendar time. As it happens,
two of the matrix ensembles – Rademacher and partial Hadamard – were completed
long after the others and the data were not available at the time of the analyses
reported so far.

A basic principle in science is out-of-sample validation, namely building a model
using data available at a certain moment in time and then later using data that
were not available to the model construction to test the model construction.

The fresh data provided by the Rademacher and partial Hadamard runs provide
an excellent opportunity for validation of our fitted models.

Such validation could be helpful for the following reason. A critic of our analysis
could point out that we have used the same data to choose the decay exponent
γ = 1/2 in our scaling model µ ∼ N−1/2, as well as to study lack of fit of that
model. This is not inferentially rigorous, as the exponent has specifically been
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chosen to minimize lack of fit, and we then argue that the lack of fit at such γ is
not significant. The use of the same data for both tasks means that the t-scores
and p-values no longer have the assumed distributions.

In our case, we have about 10,000 Z-scores, and we believe this criticism is not
as serious as in many other occurrences of this practice, and we are prepared to
argue this point. However, in this instance because we have an independent set of
validation data, we can actually perform direct model validation and avoid lengthy
rationalizations of our earlier analysis.

The validation data have one oddity: The Hadamard ensemble is computable
only for special choices of N , and we happen only to have data for N = 256 and
N = 512, while for the Rademacher ensemble we have data for N = 200, 400, and
1600 as per usual.

We now use those data to validate the following points in our analysis.

• Bulk distribution of Z-scores;
• Fit of N−1/2 model for scaling of means;
• Lack of Fit at small δ caused by displacement of the LD50.

It will turn out that the Rademacher ensemble is not exceptional while the
Hadamard is; and for both Rademacher and Hadamard the models developed using
the other ensembles fit rather well.

5.8.1. Bulk distribution of Z-scores. In figures 21 and 22 we present a sequence of
QQ plots showing the bulk distribution of Z-scores for suites 19− 20 (at N = 200,
400 and 1600) and for suites 13-14 (at N = 256 and 512). In each plot the identity
line is also displayed; if the Z-scores had truly a standard normal distribution, they
would oscillate around this line.

The Rademacher suite Z-scores are typical of what we have already seen in suites
3-10. Recall that Z-scores are expected to cluster around the line Y = X at the
null hypothesis. There is some noticeable bulk misfit at N = 200, less at N = 400,
and by N = 1600 the visual misfit has mostly disappeared. The misfit at N = 200
is mostly in the lower tail, and in a downward shift away from the Y = X line,
meaning that there are situations where our realization of the Rademacher ensemble
at N = 200 gives noticeably better success probabilities than the Gaussian ensemble,
and it also gives slightly better success probabilities on average.

The Hadamard suite Z-scores are typical of what we have already seen in suites
11,12, and 15. There is some very noticeable bulk misfit at N = 256, and much less
at N = 512. We do not have data at larger N . The misfit at N = 256 is mostly
in the upper tail, meaning that there are some situations where the Hadamard
ensemble at N = 256 gives noticeably worse success probabilities than the Gaussian
ensemble. This upper tail effect has mostly disappeared by N = 512, however for
the suite with positive coeficients at N = 512 we see that the slope of the Z-score
graph is higher than 1, so the bulk distribution of Z-scores has seemingly higher
standard deviation than 1.0. This is a sign of overdispersion, i.e. the underlying
success probability p1 might best be treated as a random variable which varies from
realization to realization, but which has the correct expectation p0.

5.8.2. Linear models of the Z-scores. Above we reported fits explaining the ob-
served Z-scores using two models of the form (5.7)-(5.8). We considered two such
models, one with the restrictions α0 = 0 and β0 = 0, and one without.
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Figure 21. Z-scores for suites 19-20, the Rademacher ensemble,
at N = 200, 400 and 1600
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Figure 22. Z-scores for suites 13-14, the Hadamard ensemble, at
N = 256 and 512

The display below shows the output of the R linear model command for the
restricted model. The symbol de denotes δ−1/2 and the symbol probSize denotes
1/
√

N . The output lists interaction terms such as probSize:de, which is what we
have called β1(N).
Call:
lm(formula = Z ~ probSize * de + probSize * dea2 - de - dea2 - 1)

Residuals:
Min 1Q Median 3Q Max

-3.08857 -0.65803 0.04351 0.71908 3.04688

Coefficients:
Estimate Std. Error t value Pr(>|t|)

probSize -3.357 1.684 -1.993 0.0466 *
probSize:de 2.640 6.410 0.412 0.6805
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probSize:dea2 -71.876 14.293 -5.029 6.17e-07 ***
---
Residual standard error: 1.037 on 756 degrees of freedom
Multiple R-Squared: 0.1641,Adjusted R-squared: 0.1608
F-statistic: 49.49 on 3 and 756 DF, p-value: < 2.2e-16

We have these key points:
• Scaling with N : the mean Z-score tends toward zero with increasing N .
• Standard deviation ≈ 1. The standard devation of the residual Z-scores is

close to 1.
• Hinge terms. The linear trend term is not significant but the hinge term is.

When we fit the unrestricted model, allowing non scaling terms that do not
decay with increasing N , we see that in fact the only term approaching significance
is again the scaling Hinge term.
Call:
lm(formula = Z ~ probSize * de + probSize * dea2)

Residuals:
Min 1Q Median 3Q Max

-3.08564 -0.66130 0.04149 0.71351 3.04902

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.05629 0.18748 -0.300 0.7641
probSize -2.19063 4.15678 -0.527 0.5983
de 0.51222 0.71232 0.719 0.4723
dea2 0.03154 1.61315 0.020 0.9844
probSize:de -7.85130 15.83140 -0.496 0.6201
probSize:dea2 -72.84768 35.45530 -2.055 0.0403 *
---

Residual standard error: 1.038 on 753 degrees of freedom
Multiple R-Squared: 0.1179,Adjusted R-squared: 0.112
F-statistic: 20.12 on 5 and 753 DF, p-value: < 2.2e-16

The unrestricted model has a worse adjusted R2 than the scaling model and does
not produce a meaningfully better residual standard deviation. We conclude that
the scaling model fits the Rademacher ensemble adequately. Also, since the form of
the model and the particular analyses we are presenting were both specified before
the data became available, the statistics can be considered inferentially rigorous.

The situation with the Hadamard ensemble is quite different. It belongs with the
exceptional ensembles, in the sense that substantial lack of fit is evident, particularly
at small δ and and small N . Also, since we have only two values of N – 256 and
512 – it is unclear that fitting the linear model will in any way validate scaling.

5.8.3. Lack of fit at the Hadamard ensembles. The Hadamard ensemble displays, at
N = 256, the lack of fit which is familiar to us from the exceptional ensembles 11,12,
and 15. Figure 23 displays the behaviour of Z-scores as a function of ρ = k/n within
each constant-δ slice, together with fits using the displaced LD50 model which we
showed described the other exceptional ensembles, with the same displacement of
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Figure 23. Z-scores for suite 14, N = 256 plotted versus ρ = k/n
at each value of δ = n/N . Vertical bars indicate asymptotic phase
transition and nominal width of the transition zone. Red Crosses
indicate fits using the displaced LD50 model developed earlier.
This model describes reasonably well the lack-of-fit.

one transition width. Note that this model was developed entirely before these data
became available. Hence this display presents a validation of the earlier approach.

One can see in figure 23 that the displaced LD50 model indeed adequately
describes the structure at small δ in the Hadamard ensemble at N = 256. For
comparison, we show in figure 24 which demonstrates that no such model is needed
in the Rademacher ensemble.

5.8.4. Implications of the validation ensembles. Our analysis of the validation en-
sembles follows the script we arrived at in earlier analysis. Since the models being
fit – which in earlier analysis depended on the same data as those being explained
– now do not depend on the data being explained, we gain additional confidence
about the model we developed. In particular, the partitioning into ordinary and
exceptional ensembles, the modelling of mean Z-scores with power law means hav-
ing decay N−1/2 in ordinary ensembles and the existence of transient effects in
exceptional ensembles at small N and δ – all seem confirmed in our validation
ensembles.

5.9. Conclusions. We made extensive computational experiments, solving under-
determined systems of equations y = Ax using linear programming based algo-
rithms in cases where a known solution x0 is a k-sparse vector, and A is an n by N
matrix with n < N . We tracked the success of the linear programming algorithms
at recovering this known sparse solution.

We considered millions of such systems at a range of problem sizes and covering
a range of random matrix ensembles. Our work would have required more than 6
years using a single modern desktop computer.
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Figure 24. Z-scores for suite 20, N = 200 plotted versus ρ = k/n
at each value of δ = n/N . Vertical bars indicate asymptotic phase
transition and nominal width of the transition zone. Red Crosses
indicate fits using displaced LD50 model. This lack of fit is not
substantial and the model does not capture any that might be
evident.

The Gaussian ensemble is well understood in the large-problem limit based on
prior theoretical work. It is known there is a phase transition in the (δ, ρ) phase
diagram at the curve (δ, ρ(δ;Q)). For (δ, ρ) below this curve we see success –
the probability of success tends to 1 – and above this curve we see failure – the
probability of success tends to 0. Here δ = n/N is a measure of matrix shape and
ρ = k/n is a measure of sparsity of the solution vector.

Empirical work at the Gaussian ensemble shows that for finite N the location of
50% success closely matches the asymptotic phase transition ρ(δ;Q). In fact the
success probability behaves with ρ as Φ̄((ρ−ρ(δ;Q))/w(δ,N)) where Φ̄ denotes the
N(0, 1) survival function. and w(δ,N) is a width parameter. In picturesque terms
there is a transition zone: for ρ < ρ(·;Q) − 3w success is overwhelmingly likely;
for ρ > ρ(·;Q) + 3w success is overwhelmingly unlikely, and in between there is a
transition zone of width ∝ w. w tends to zero with increasing problem size N as
O(N−1/2).

Broadly similar behaviour is evident at all but two of the non-Gaussian matrix
ensembles considered here. Hence, the evidence points to asymptotic phase tran-
sitions at the conforming matrix ensembles which are all located at precisely the
same place as in the Gaussian case. This is the hypothesis of weak universality
advanced and maintained in the main text.

The above conclusions emerged from using standard two-sample statistical in-
ference tools to compare results from non-Gaussian ensembles with their Gauss-
ian counterparts at the same problem size and sparsity level. We considered the
behaviour of over 16,000 Z-scores and observed good bulk agreement of the two-
sample Z-scores with the N(0, 1) distribution, supporting the null hypothesis of
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no difference; however, fitting a linear model to an array of such Z-scores we were
able to identify statistically significant nonzero mean Z-scores varying with prob-
lem size, with undersampling fraction δ = n/N , and, at small δ, with ρ. The means
exhibit trends varying from ensemble to ensemble, but they decay with problem
size N as O(N−1/2). The nonzero means are consistent with weak, ‘asymptotic’,
universality but not with strong, finite-N , universality. After accounting for these
means, the Z-scores exhibit standard deviations close to one, with a small fraction
of exceptions.

For the non-Gaussian ensembles studied here the fact that phase diagram be-
haviour matches the Gaussian case goes far beyond current theory (e.g. Adamczak
et al. (2009) )
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