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Restricted Isometry Constants where `p sparse

recovery can fail for 0 < p ≤ 1
Michael E. Davies Rémi Gribonval

Abstract

This paper investigates conditions under which the solution of an underdetermined linear system with minimal

`p norm, 0 < p ≤ 1, is guaranteed to be also the sparsest one. The results highlight the pessimistic nature of sparse

recovery analysis when recovery is predicted based on the restricted isometry constants (RIC) of the associated

matrix. Matrices are constructed with RIC δ2m arbitrarily close to 1/
√

2 ≈ 0.717 where sparse recovery with p = 1

fails for at least one m-sparse vector. This indicates that there is limited room for improving over the best known

positive results of Foucart and Lai, which guarantee that `1-minimisation recovers all m-sparse vectors for any

matrix with δ2m < 2(3 − √2)/7 ≈ 0.4531. Another consequence of the construction is that recovery conditions

expressed uniformly for all matrices in terms of RIC must require that all 2m-column submatrices are extremely well

conditioned (condition numbers less than 2.5). In contrast, matrices are also constructed with δ2m arbitrarily close

to one and δ2m+1 = 1 where `1 minimisation succeeds for any m-sparse vector. This illustrates the limits of RIC

as a tool to predict the behaviour of `1 minimisation. These constructions are a by-product of tight conditions for

`p recovery (0 ≤ p ≤ 1) with matrices of unit spectral norm, which are expressed in terms of the minimal singular

values of 2m-column submatrices. The results show that, compared to `1 minimisation, `p minimisation recovery

failure is only slightly delayed in terms of the RIC values. Furthermore in this case the minimisation is nonconvex

and it is important to consider the specific minimisation algorithm being used. It is shown that when `p optimisation

is attempted using an iterative reweighted `1 scheme, failure can still occur for δ2m arbitrarily close to 1/
√

2.

Index Terms

underdetermined linear system, sparse representation, overcomplete dictionary, compressed sensing, inverse prob-

lem, restricted isometry property, convex optimisation, nonconvex optimisation, iterative reweighted optimisation.

I. INTRODUCTION AND STATE OF THE ART

This paper investigates conditions under which the solution ŷ of minimal `p norm, 0 < p ≤ 1, of an under-

determined linear system x = Φy is guaranteed to be also the sparsest one. This is a central problem in sparse

overcomplete signal representations, where x is a vector representing some signal or image, Φ is an overcomplete
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signal dictionary, and y is a sparse representation of the signal. This problem is also at the core of compressed

sensing, where Φ is called a sensing matrix, x is a collection of M linear measurements of some ideally sparse

data y. Although in both settings it is practically relevant to consider sparse approximation rather than exact sparse

representation, most of the results of this paper are of a negative nature and naturally extend from the representation

setting chosen here (for the sake of simplicity) to the approximation setting.

The proposed approach is twofold:

• we construct matrices (which we will call dictionaries from now on) Φ with “good” restricted isometry

properties where sparse recovery with `p minimisation will nevertheless fail for at least one sparse vector.

• we construct dictionaries Φ with “bad” restricted isometry properties where sparse recovery with `p minimi-

sation will nevertheless succeed for all (sufficiently) sparse vectors.

The goal is to understand how much improvement is possible over the best known positive results which relate

restricted isometry constants to sparse `p recovery.

A. Notations

Given a vector x ∈ RM and a matrix Φ ∈ RM×N with M < N , we are interested in sparse solutions to

x = Φy (1)

We will denote by ‖y‖p the `p sparsity measure defined as:

‖y‖p :=
( N∑

j=1

|yj |p
)1/p (2)

where 0 < p ≤ 1. When p = 0, ‖y‖0 denotes the `0 pseudo-norm that counts the number of non-zero elements of

y. The coefficient vector y is said to be m-sparse if ‖y‖0 ≤ m.

We will use N (Φ) for the null space of Φ. We will also make use of the subscript notation yΩ to denote a

vector that is equal to some y on the index set Ω and zero everywhere else. Denoting |Ω| the cardinality of Ω,

the vector yΩ is |Ω|-sparse and we will say that the support of the vector y lies within Ω whenever yΩ = y. For

matrices the subscript notation ΦΩ will denote a submatrix composed of the columns of Φ that are indexed in the

set Ω.

B. Known conditions for `p sparse recovery

It has been shown in [14] that if:

‖zΩ‖p < ‖zΩc‖p (3)

holds for all nonzero z ∈ N (Φ) then any vector y? whose support lies within Ω, can be recovered as the unique

solution of the following optimisation problem (which is non-convex for 0 ≤ p < 1):

ŷ = argmin
y

‖y‖p s.t. Φy = Φy?. (4)
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Furthermore this condition, which is often referred to as the ”null space property”, is tight in the sense that if the

inequality (3) does not hold for some z ∈ N (Φ) then the vector y? := zΩ is supported on Ω but is not the unique

minimiser of (4), a property that we will refer to as `p failure. As a consequence, if (3) holds for all z ∈ N (Φ)

and all index sets Ω of size m, then any m-sparse vector y? is recovered as the unique minimiser of (4). This

condition is again tight, and it has been shown in [15], [16] that when it is satisfied for some 0 < p ≤ 1 it is also

satisfied for all 0 ≤ q ≤ p.

Using (4), particularly when p = 1, has become a popular mean of solving for sparse representations. This is

partly due to empirical evidence [5] that it often performs well and partly due to theoretical results [2], [3], [6], [14],

[17]. An important concept in this regard that has been particularly influential in the emerging field of compressed

sensing is the restricted isometry constant (RIC), δk. For a matrix Φ this is defined as the smallest number such

that:

(1− δk) ≤ ‖ΦyΩ‖22
‖yΩ‖22

≤ (1 + δk) (5)

for every vector y and every index set Ω with |Ω| ≤ k. One weakness of the RIC is that the upper bound and

the lower bound play fundamentally different roles and it is not preserved under a re-scaling of the dictionary [11]

while recovery properties clearly are. One can, however, usually overcome the latter problem by considering an

appropriately re-scaled dictionary such that both the upper and the lower bound are tight.

The RIC’s importance can be linked with the following results:

1) Every m-sparse representation is unique if and only if [7]

δ2m < 1 (6)

for an appropriately re-scaled dictionary. Furthermore almost every dictionary Φ ∈ RM×N with M ≥ 2m

satisfies this condition (again with appropriate re-scaling). Foucart and Lai [11] have also shown that for a

given dictionary with δ2m+2 < 1 there exists a sufficiently small p for which solving (4) is guaranteed to

recover any m-sparse vector.

2) If

δ2m < 2(3−
√

2)/7 ≈ 0.4531 (7)

then every m-sparse representation can be exactly recovered using linear programming to solve (4) with

p = 1, [11]. Furthermore most dictionaries Φ ∈ RM×N (sampled from an appropriate probability model) will

have an RIC δ2m < δ as long as: M ≥ Cδ−1m log(N/m), where C is some constant [1].

The RIC also bounds the condition number, κ, of submatrices, ΦΩ, of a dictionary,

κ(ΦΩ) ≤
√

1 + δk

1− δk
, |Ω| ≤ k (8)

(indeed, Foucart and Lai [11] formulated their results in asymmetric bounds αk ≤ ‖ΦyΩ‖22/‖yΩ‖22 ≤ βk that

provide a sharper bound on the maximal submatrix condition number, with less re-scaling issues). This in turn

bounds the Lipschitz constant of the inverse mapping resulting from solving the optimisation problem (4). In this
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regard the RIC also plays an important role in the noisy recovery problems [3], [11]: x = Φy+ ε or x = Φ(y+ ε)

where ε is an unknown but bounded noise term.

Note that when (7) holds all the 2m-submatrices have condition number κ(ΦΩ) ≤ 1.7 when |Ω| ≤ 2m, so they

are extremely well behaved. In contrast, δ2m < 1 imposes the finiteness of the condition number of the submatrices

as only constraint.

C. Contributions

The bound (7) is an improvement over previous known bounds for `1 recovery [3]. However, in the proof of

these bounds [3], [11], there are a number of estimates that are not tight. It is therefore an open question as to how

much better we could expect to do, i.e. how large can we set δ ≤ 1 while still guaranteeing `1 recovery of any

m-sparse vector for any dictionary with δ2m < δ? This question is partially addressed by the following result:

Theorem 1: For any ε > 0 there exists an integer m and a dictionary Φ with a restricted isometry constant

δ2m ≤ 1/
√

2 + ε for which `1 recovery fails on some m-sparse vector.

The main idea of the proof is to first reduce the search for a failing dictionary to so-called minimally redundant

(i.e., Φ ∈ RM×N with M = N−1) unit spectral norm dictionaries. Such dictionaries have one-dimensional kernels

which simplifies the calculation considerably. They are however of little practical interest for Compressed Sensing,

since the number of measurements is about the same as the dimension of the signals. The proof is by an explicit

construction which we will develop in the next section and is a by-product of some more general result concerning

certain isometry conditions for which `p recovery fails, 0 < p ≤ 1. Indeed our complete results for RIC recovery

conditions along with the result of [11] are summarised graphically in Figure 1.

The plot is divided up into three regions. Dictionaries in the bottom region [11] are guaranteed to succeed using

any `p optimisation. In the top region there exist dictionaries, specifically minimally redundant row orthonormal

dictionaries (also sometimes called unit norm tight frames) that are guaranteed to fail to recover at least one m-

sparse vector y (Theorem 3). On the other hand, we can also find dictionaries (again minimally redundant row

orthonormal dictionaries) that are `p succeeding for any 0 < p ≤ 1 with a RIC, δ2m, arbitrarily close to one

(Lemma 1).

Although there is a gap between the positive result of Foucart and Lai [11] for p = 1 and the negative result

presented here, it is not a large one. For example, even if the positive result could be tightened to δ2m < 1/
√

2

(which would be the case if our negative results happened to be sharp, and the result is sharp for 2m > N −M

with mildy overcomplete row orthonormal dictionaries, see Corollary 1 below) this would still require that the

condition numbers of any 2m-column submatrix of Φ would have to be κ(ΦΩ) ≤ 2.5, for |Ω| ≤ 2m, which from

any perspective is still extremely well conditioned.

The plot suggests that there might be some benefit in using p ¿ 1 to improve sparse recovery. However in this

case the optimisation problem is no longer convex and so we need to consider algorithm specific recovery results.

In this paper we examine the iterative reweighted `1 technique proposed in [9], [10], [4], [11] and present the

following complement to Theorem 1.
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Fig. 1. A summary of known results ([11], Lemma 1 and Theorem 3) relating the restricted isometry constant to `p recovery. Note the

guaranteed success for row orthonormal dictionaries is only applicable to mildly overcomplete dictionaries since by definition N < 2M (see

Corollary 1).

Theorem 2: For any ε > 0 there exists an integer m and a dictionary Φ with a restricted isometry constant

δ2m ≤ 1/
√

2 + ε for which recovery using any iteratively reweighted `1 algorithm fails on some m-sparse vector.

This is a somewhat surprising result since one would suspect that the adaptivity built into the choice of the weight

should enable improved performance. This result does not necessarily imply however that the uniform performance

of iterative reweighted `1 techniques is no better than `1 minimisation (although we suspect that the empirically

observed benefits of such algorithms are more likely to be due to the presence of a range of coefficient scales).

Instead the result highlights the danger of characterising sparse recovery uniformly in terms of the RIP.

The rest of the paper is structured as follows. In section II we introduce a variation on the classical RIC. We then

develop our RIC results based upon an explicit minimally redundant unit spectral norm dictionary construction. In

section IV we explore our results numerically for both high dimensional dictionaries and a simple 1-sparse low

dimensional example. Finally we examine the class of `p optimisation algorithms based upon iterative reweighted

`1. We conclude the paper with a discussion of implications of these results.

II. ISOMETRY MEASURES FOR UNIT SPECTRAL NORM DICTIONARIES

We will find it convenient to work with a slightly stronger condition than the usual restricted isometry property

(RIP), one associated with unit spectral norm dictionaries, i.e. dictionaries such that

‖|Φ|‖ := sup
y 6=0

‖Φy‖2
‖y‖2 = 1. (9)

Definition 1 (asymmetric RIC): Given a unit spectral norm dictionary Φ ∈ RM×N let the asymmetric RIC σ2
k
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be defined as:

σ2
k(Φ) := min

yΩ
|Ω|≤k

‖ΦyΩ‖22
‖yΩ‖22

(10)

We will usually drop the dependence on Φ when it is unambiguous. Clearly, as the maximum of any submatrix

squared singular value is bounded by 1:

max
yΩ
|Ω|≤k

‖ΦyΩ‖22
‖yΩ‖22

≤ 1, (11)

a unit spectral norm dictionary Φ with a given σ2
k implies the existence of a re-scaled dictionary, Ψk:

Ψk :=
(

2
1 + σ2

k

) 1
2

Φ (12)

with a RIC, δk:

δk(Ψk) ≤ 1− σ2
k(Φ)

1 + σ2
k(Φ)

(13)

Equality does not always hold for the re-scaled dictionary, since equality in (13) requires equality in (11). Under

certain circumstances, however, equality can be assured.

Remark 1 (Condition for equality in (13) with row orthonormal dictionaries): Suppose that Φ ∈ RM×N with

M ≤ N is a row orthonormal dictionary. Then for any k > N −M we have:

δk(Ψk) =
1− σ2

k(Φ)
1 + σ2

k(Φ)
(14)

where Ψk is defined in (12). Moreover, Ψk is the optimal re-scaling of Φ with respect to the RIC δk in the sense

that δk(αΦ) ≥ δk(Ψk) for any α > 0. In particular for minimally redundant row orthonormal dictionaries (i.e.,

when M = N − 1) equality (14) is true for any k ≥ 2.

Proof:

ΦΦT = Id. For every vector y ∈ RN , defining x := Φy and z := y−ΦT Φy yields an orthogonal decomposition

y = ΦT x + z hence

‖Φy‖22 = ‖x‖22 = ‖ΦT x‖22 = ‖y‖22 − ‖z‖22

and the upper bound in (11) is therefore achieved as long as we can find a yΩ that is in the range of ΦT . For any

Ω of size k, the dimension of the subspace spanned by all vectors of the form yΩ is k while the codimension of

the range of ΦT is N −M . Hence if k > N −M there exists at least one nonzero vector in the intersection of

these subspaces. The optimality of the re-scaled dictionary Ψk follows from the tightness of both upper and lower

bounds in (5) for Ψk.

III. DICTIONARIES WITH SMALL δ2m WHERE `p CAN FAIL

Our aim is to construct dictionaries Φ where sparse recovery will fail for at least one m-sparse vector y ∈ RN .

We consider the `p problem for any 0 < p ≤ 1 although we only provide closed form results for `1. We are

therefore looking for dictionaries that explicitly fail the `p recovery condition (3) while possessing small RIC δ2m.
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To find ’`p failing dictionaries’ (i.e., dictionaries for which `p minimisation fails to recover at least one m-sparse

vector1) with small RIC δ2m, we will be looking for `p failing dictionaries with largest possible σ2
2m. We will indeed

prove somewhat more than Theorem 1, including tight results for `p failure with unit spectral norm dictionaries in

terms of the asymmetric RIC σ2
2m, and tight results for `p failure with row orthonormal dictionaries in terms of

the RIC δ2m.

Theorem 3: Consider 0 < p ≤ 1 and let 0 < ηp < 1 be the unique positive solution to

η2/p
p + 1 =

2
p
(1− ηp) (15)

• If Φ ∈ RM×N is a unit spectral norm dictionary and 2m ≤ M < N and

σ2
2m(Φ) > 1− 2

2− p
ηp (16)

then all m-sparse vectors can be uniquely recovered by solving (4).

• For every ε > 0, there exist integers m ≥ 1, N ≥ 2m + 1 and a minimally redundant row orthonormal

dictionary Φ ∈ R(N−1)×N with:

σ2
2m(Φ) ≥ 1− 2

2− p
ηp − ε (17)

for which there exists an m-sparse vector which cannot be uniquely recovered by solving (4).

Whenever ηp is irrational the inequality in (16) can be replaced with ≥ . Whenever ηp is rational, equality can be

achieved with ε = 0 in (17).

Specialising to p = 1 we have η2
1 +2η1− 1 = 0, hence η1 =

√
2− 1 and the right-hand side in (16) is 3− 2

√
2. In

terms of the standard RIP δ2m for the re-scaled dictionary (12) with k = 2m this means, using (13), that for any

ε > 0 there exists a dictionary Ψ with δ2m < 1/
√

2 + ε where `1 recovery can fail, and Theorem 1 is proved.

Combining Theorem 3 with Remark 1 above we get the following corollary:

Corollary 1: Assume that Φ ∈ RM×N is a suitably re-scaled row orthonormal dictionary. If

N −M < 2m ≤ M < N (18)

and

δ2m(Φ) <
ηp

2− p− ηp
(19)

then all m-sparse vectors can be uniquely recovered by solving (4). Whenever ηp is irrational, the inequality in (19)

can be replaced with ≤.

Strictly speaking the condition 2m ≤ M is redundant with (19) since 2m > M implies δ2m ≥ 1.

By the second part of Theorem 3, Corollary 1 is sharp in the sense that the right-hand side in (19) cannot be

weakened. This does not mean however that (19) is a necessary condition on the RIC for `p success, and there exist

1We will often omit the dependence on m when referring to ’`p failing dictionaries’.
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dictionaries with δ2m arbitratrily close to one which recover every m-sparse vector, as expressed by the following

lemma.

Lemma 1: For any ε > 0 , there exist integers m and N and a minimally redundant row orthonormal dictionary

Φ1 ∈ R(N−1)×N along with re-scaled versions of Φ1, Φ2 and Φ3, such that every m-sparse vector is recovered

by solving (4) with any of Φ1,Φ2,Φ3 and any 0 ≤ p ≤ 1, yet

σ2
2m(Φ1) ≤ ε (20)

σ2
2m+1(Φ1) = 0 (21)

δ2m(Φ2) > 1− ε (22)

δ2m+1(Φ3) = 1. (23)

Theorem 3 will be proved by explicitly constructing the `p failing unit spectral norm dictionaries with largest

σ2
2m for a given pair (m,N) with 2m < N , and a similar construction will be used to prove Lemma 1. We postpone

the proofs and begin with a series of lemmatas.

Proposition 1 (Minimally redundant row orthonormal dictionaries are optimal among unit spectral norm dictionaries):

Let Φ ∈ RM×N be an arbitrary unit spectral norm dictionary which is `p failing for some m-sparse vector with

M < N . Then there exists a minimally redundant row orthonormal (unit spectral norm) dictionary Φ? ∈ R(N−1)×N

which is `p failing for the same m-sparse vector such that for every k

σ2
k(Φ) ≤ σ2

k(Φ?). (24)

Proof: We consider the singular value decomposition: Φ = V ΣUT where V ∈ RM×M and UT ∈ RM×N are

row orthonormal, and Σ ∈ RM×M is diagonal. Since Φ has unit spectral norm ‖|Σ|‖ = 1 and we have for any y

and any Ω
‖ΦyΩ‖22
‖yΩ‖22

≤ ‖UT yΩ‖22
‖yΩ‖22

.

Since Φ is `p failing for some m-sparse vector, by the characterisation (3), there exists some offending z ∈ N (Φ)

and an index set Ωm of size m such that

‖zΩm‖p
p ≥ ‖zΩc

m
‖p

p (25)

Now let W ∈ RN×(N−M−1) be an orthonormal basis over the orthogonal complement to {z, U}, such that {z, U,W}
forms an orthonormal basis over RN (z is orthonormal to U since Φz = 0). We can then write any yΩ ∈ RN as:

yΩ = za + Ub + Wc

for some a ∈ R,b ∈ RM and c ∈ RN−M−1. Define the minimally redundant row orthonormal dictionary Φ? :=

[U,W ]T ∈ R(N−1)×N , which satisfies ‖|Φ?|‖ = 1. First, for any yΩ we have:

‖ΦyΩ‖22
‖yΩ‖22

≤ ‖UT yΩ‖22
‖yΩ‖22

=
‖b‖22

a2 + ‖b‖22 + ‖c‖22
≤ ‖b‖22 + ‖c‖22

a2 + ‖b‖22 + ‖c‖22
=
‖Φ?yΩ‖22
‖yΩ‖22

therefore σ2
k(Φ) ≤ σ2

k(Φ?). To conclude the proof we observe that by construction Φ?z = 0, hence z ∈ N (Φ?),

which combined with (25) and the characterisation (3) shows that Φ? is `p failing for at least one m-sparse vector.
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The proposition above shows that `p failing unit spectral norm dictionaries with largest σ2
2m can be searched

within the restricted set of `p failing minimally redundant row orthonormal dictionaries. We next evaluate the

minimal singular values of the submatrices made of k columns of such Ψ.

Proposition 2 (Minimal singular values of submatrices are characterised by the null space): Let Φ ∈ R(N−1)×N

be a minimally redundant row orthonormal dictionary, and let z ∈ RN with ‖z‖2 = 1 be a vector which spans

N (Φ). Denoting Ωk the set indexing the k largest components of z we have for every k

σ2
k(Φ) = 1− ‖zΩk

‖22. (26)

Proof: Since Φz = 0 and Φ is row orthonormal, {z,ΦT } forms an orthonormal basis in RN , and we can

again write any vector y as:

y = za + ΦT b

where a ∈ R and b ∈ RN−1, and therefore ‖Φy‖22 = ‖b‖22. If y has unit norm then

1 = ‖y‖22 = a2 + ‖b‖22 = |〈z,y〉|2 + ‖Φy‖22

To find the minimal singular value associated with the submatrix ΦΩ we need to solve the problem

σ2
k(Φ) = min

Ω,|Ω|≤k
min
yΩ

‖yΩ‖=1

‖ΦyΩ‖22

= 1− max
Ω,|Ω|≤k

max
yΩ

‖yΩ‖=1

|〈z,yΩ〉|2

i.e., we need to find the unit vector y?
Ω that is maximally correlated with z. For a given Ω this is satisfied with

y?
Ω = zΩ/‖zΩ‖, in which case |〈z,yΩ〉|2 = ‖zΩ‖22. The best Ω is the one which captures the k largest components

of z, that is to say Ω? = Ωk.

The proposition above shows that for minimally redundant row orthonormal dictionaries, σ2
k(Φ) is completely

determined by the unit vector z which spans the null space N (Φ). Our original problem was to select an `p failing

minimally redundant row orthonormal dictionary Φ with maximal σ2
k(Φ) for k = 2m. This is now turned into

an optimisation problem where we wish to select a unit norm vector z that allows `p reconstruction failure for

m-sparse vectors, while maximising σ2
k, i.e. minimising ‖zΩk

‖22.

Before we proceed to characterize the structure of z further we need to introduce the following technical lemma

that we will need below.

Lemma 2: Let 0 < p < 2 and u1 > v1 ≥ v2 > u2 ≥ 0 such that up
1 + up

2 = vp
1 + vp

2 . Then u2
1 + u2

2 > v2
1 + v2

2 .

Proof: Let J = u2
1 + u2

2 and up
1 + up

2 = c for some constant c > 0. It is sufficient to show that ∂J/∂u1 > 0

whenever u1 > u2.

∂J

∂u1
= 2u1 + 2u2

∂u2

∂u1
= 2u1 − 2u2

(
u2

u1

)1−p

= 2u1

(
1−

(
u2

u1

)2−p
)

which is strictly positive if u1 > u2 ≥ 0 and p < 2.

We next consider the precise form of z for failing dictionaries with maximal σ2
2k.
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m m+L

Fig. 2. A stylised depiction of an optimal vector from the null space for (27-30).

Without loss of generality, up to column permutation of Φ and sign changes, we may assume that zi ≥ zi+1 ≥ 0,

and the `p failing assumption is that ‖zΩm
‖p

p ≥ ‖zΩc
m
‖p

p. Defining Λ0 = {1, . . . , m}, Λ1 = {m + 1, . . . , k}
and Λ2 = {k + 1, . . . , N}, and with a little manipulation, the optimisation problem for finding a failing z with

maximal associated σ2
k can be written in the form of (27-30) below. In particular, since (29) imposes the constraint

‖zΛ2‖22 = 1−‖zΛ0‖22−‖zΛ1‖22, minimising J(z) in (27) amounts to minimising ‖zΛ0‖22 + ‖zΛ1‖22 = ‖zΩk
‖22. The

next lemma identifies the particularly simple form of the optimal vectors from the null space which is also depicted

in Figure 2.

Lemma 3 (Shape of the optimal vector z of the null space): Consider k ≥ 2m and let z? ∈ RN be a solution to

the following optimisation problem:

minimise: J(z) := ‖zΛ0‖22+‖zΛ1‖22
‖zΛ2‖22

(27)

subject to:
‖zΛ1‖p

p+‖zΛ2‖p
p

‖zΛ0‖p
p

≤ 1 (28)

‖z‖22 = 1 (29)

and zi ≥ zi+1 ≥ 0 (30)

Then z? is piecewise flat, and has the form:

z? = [α, . . . , α︸ ︷︷ ︸
m

, β, . . . , β︸ ︷︷ ︸
L

, γ, 0, . . . , 0]T (31)

for some constants α > β > γ ≥ 0 and some L such that k + 1 ≤ m + L ≤ N . Furthermore (28) holds with

equality for z?.

Proof: We first note that, due to the continuity of J(z) and the compactness of the constraint set, an optimum

z? is guaranteed to exist. Then we prove by contradiction that z? must have the claimed form.

• z?
Λ0

is flat. We know that

‖z?
Λ0
‖2 ≥ m1/2−1/p‖z?

Λ0
‖p

with equality only if z?
i = m−1/p ·‖z?

Λ0
‖p for all i ∈ Λ0, i.e. if z?

Λ0
is ”flat”. We define z′ by z′Λ1∪Λ2

= z?
Λ1∪Λ2

and z′i = m−1/p ·‖z?
Λ0
‖p Note that z′′ = z′/‖z′‖2 is feasible. If z?

Λ0
was not flat, by the strict inequality above

we would obtain J(z′′) = J(z′) < J(z?) which would contradict the fact that z? is an optimum. Hence z?
Λ0

must be flat.
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• z?
Λ1

is flat with all entries equal to z?
k+1 = ‖z?

Λ2
‖∞. By contradiction, assume that z?

i 6= z?
k+1 for some

i ∈ Λ1. Then, we can construct a z′ with z′Λ0∪Λ2
= z?

Λ0∪Λ2
and z′i = z?

k+1 for all i ∈ Λ1. Again re-scale:

z′′ = z′/‖z′‖2. Thus z′′ is feasible and J(z′′) = J(z′) < J(z?). Hence z?
Λ1

must be flat with value z?
k+1.

• Shape of z?
Λ2

. Let j be the smallest index such that z?
j < z?

k . Similarly let l be the largest index such that

z?
l > 0. Suppose that j 6= l, otherwise we already have the form in (31). We can now construct a z′ with

non-negative, non-increasing entries such that z′i = z?
i for all i 6= {j, l} with ‖z′‖p

p = ‖z?‖p
p as follows. If

(z?
j )p + (z?

l )p ≤ (z?
k)p we set:

z′l = 0 and z′j =
(
(z?

j )p + (z?
l )p

)1/p

Otherwise we set:

z′k = z?
k and z′l =

(
(z?

j )p + (z?
l )p − (z?

k)p
)1/p

Lemma 2 implies that ‖z′Λ2
‖2 > ‖z?

Λ2
‖2, hence J(z′) < J(z?). Again we can re-scale to make the vector

feasible. We can therefore conclude that z?
Λ2

can only have one element not equal to z?
k or 0. This concludes

the proof that z? must have the form in (31) with α ≥ β > γ ≥ 0 and k +1 ≤ m+L ≤ N . Moreover by (28)

we have

m · αp = ‖z?
Λ0
‖p

p ≥ ‖z?
Λ1
‖p

p + ‖z?
Λ2
‖p

p ≥ L · βp ≥ (k + 1−m) · βp > m · βp

hence α > β.

• Constraint (28) hold with equality for z?. Suppose that the left-hand side of (28) is strictly less than one

for z?. Since α > β, we could then find a < 1 such that z′ defined with z′Λ1∪Λ2
= z?

Λ1∪Λ2
and z′Λ0

= az?
Λ0

,

properly re-scaled, simultaneously reduces the objective function (27) while still satisfying (28) and (30).

Therefore (28) must hold with equality for any optimal z?.

Lemma 3 implies that we only have to consider a relatively simple form for z, which is parameterised by α > β >

γ ≥ 0 and m,L, where k−m+1 ≤ L ≤ N −m. Note that from Lemma 3 any zero elements in z can be removed

without altering the optimal σ2
k by simply reducing the dimension N of the dictionary. In order to calculate the

largest σ2
k we need to evaluate optimal values for α, β, γ, m and L. In fact we will see that we can ignore γ, which

comes from the fact that the optimal constructions will correspond to m and N very large. The following lemma

is expressed for k = 2m but straightforward modifications would make it possible to handle arbitrary k ≥ 2m.

Lemma 4 (Calculating the largest σ2
2m): Consider k = 2m < N , 0 < p ≤ 1 and let ηp be the unique positive

solution to (15). Let z ∈ RN be of the form (31) with α > β > γ ≥ 0 and m + 1 ≤ L ≤ N −m, and assume that

z satisfies (28) with equality and (29). Then

‖zΩ2m‖22 ≥
2

2− p
ηp. (32)

If ηp is rational, equality is achieved for some z?
p. Otherwise, the inequality can be replaced with >, but one can

get arbitrarily close to the lower bound with appropriate choices of k = 2m < N and z satisfying all the above

conditions.
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Proof: Define

L′ := L + (γ/β)p (33)

η := m/L′. (34)

Since γ < β, we have L ≤ L′ < L+1, and since m+1 ≤ L we have 0 < η < 1. The `p failure equality constraint

(28) reads mαp = Lβp + γp = L′βp hence

β = η1/p · α < α (35)

Similarly by (29) we have mα2 + Lβ2 + γ2 = 1, and we let the reader check that this implies

mα2 + L′β2 = 1 + (γ/β)pβ2 − γ2 ≥ 1 (36)

with equality when L′ is integer (i.e. when γ = 0). Substituting β = η1/p · α and L′ = m/η in (36) we obtain:

mα2 ≥
(
1 + η2/p−1

)−1

(37)

and it follows that

‖zΩ2m‖22 = mα2 + mβ2 = mα2
(
1 + η2/p

)
≥

(
1 + η2/p

)
(
1 + η2/p−1

) (38)

Differentiating the right-hand side and equating to zero, we observe that the zero of the derivative indeed yields

a minimum, and we obtain that the value ηp that minimises the bound on ‖zΩ2m‖22 for 0 < η < 1 satisfies (15).

Substituting this back into (38) gives:

‖zΩ2m‖22 ≥
2

2− p
ηp (39)

Now that we have established the bound we discuss its tightness. First, one can check that for 0 < p ≤ 1,

Equation (15) always has a unique solution in the region 0 < ηp < 1, though the solution does not appear to have

a general closed form. Then, notice that by continuity, the right-hand side in (38) can get arbitrarily close to the

right-hand side in (39) by choosing η sufficiently close to ηp. Moreover, by the density of the rational numbers

in R, we can always find integers m and L such that m/L gets arbitrarily close to ηp. For such integers, setting

γ = 0 (so that L′ = L and η = m/L), choosing α to reach equality in (37), and setting β according to (35) yields

a vector z? for which ‖z?
Ω2m

‖22 is arbitrarily close to the lower bound. If ηp is rational then equality is actually

achieved. If ηp is irrational, then equality cannot be achieved.

We are now able to state the proof of Theorem 3.

Proof: [Proof of Theorem 3] Consider a unit spectral norm dictionary Φ. Assume that Φ is `p failing for some

m-sparse vector. Then, by Proposition 1, there exists a minimally redundant row orthonormal (unit spectral norm)

dictionary Φ? ∈ R(N−1)×N which is `p failing for some m-sparse vector such that

σ2
2m(Φ) ≤ σ2

2m(Φ?)

By Proposition 2,

σ2
2m(Φ?) = 1− ‖zΩ2m‖22
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where z is a unit norm vector which spans the null space N (Φ?). Since Φ? is `p failing, z (after proper reindexing

and taking the absolute value) satisfies the constraints (28), (29) and (30), therefore by Lemma 3 and Lemma 4,

‖zΩ2m‖22 ≥
2

2− p
ηp. (40)

We conclude that

σ2
2m(Φ) ≤ 1− 2

2− p
ηp.

By contraposition, if σ2
2m(Φ) > 1− 2

2−pηp then Φ cannot be `p failing for any m-sparse vector. If ηp is irrational,

the inequality in (40) can be replaced with > hence it is sufficient to assume that σ2
2m(Φ) ≥ 1− 2

2−pηp.

Conversely, by the above Propositions and Lemmatas, for every ε > 0 there exists some z? satisfying the

constraints (28), (29) and (30) for which

‖z?
Ω2m

‖22 ≤
2

2− p
ηp + ε, (41)

yielding a (minimally redundant, row orthonormal) unit spectral norm dictionary Φ?
p with

σ2
2m(Φ?

p) ≥ 1− 2
2− p

ηp − ε

which is `p failing for some m-sparse vector. If ηp is rational, this is true with equality for ε = 0.

Let us proceed with the proof of Corollary 1.

Proof: [Proof of Corollary 1] Since Φ is suitably re-scaled row orthonormal dictionary, Φ = A · Φ̃ for some

row orthonormal dictionary Φ̃ and some real constant 0 < A < ∞. For N −M < 2m ≤ M , since Φ is a re-scaled

version of Φ̃, by Remark 1 we have

1− σ2
2m(Φ̃)

1 + σ2
2m(Φ̃)

= δ2m(Ψ̃2m) ≤ δ2m(Φ) <
ηp

2− p− ηp

with Ψ̃2m the optimally re-scaled version of Φ̃ given by (12), hence

σ2
2m(Φ̃) > 1− 2

2− p
ηp

and we can apply Theorem 3 to conclude.

We conclude this section with the proof of Lemma 1.

Proof: [Proof of Lemma 1] Consider z = (z0, z1) ∈ RN where N = 2m + 1, z0 ∈ Rm is ”flat” with entries

1/
√

2m and z1 ∈ Rm+1 is ”flat” with entries 1/
√

2m + 2. Check that z has non-increasing entries, is `2 normalised

and satisfies the `p recovery condition for m-sparse vectors for p = 0 as well as for every 0 < p ≤ 1:

‖z0‖p = m1/p−1/2 · ‖z0‖2 = m1/p−1/2 · ‖z1‖2 < (m + 1)1/p−1/2 · ‖z1‖2 = ‖z1‖p. (42)

Let Φ1 ∈ R(N−1)×N be a row orthornormal dictionary with null space spanned by z: by the above properties, for

every 0 ≤ p ≤ 1, every m-sparse vector is recovered by the minimisation (4). By Proposition 2, for every k we

have σ2
k(Φ1) = 1− ‖zΩk

‖22, and in particular with k := 2m and k′ := 2m + 1 we obtain

σ2
2m(Φ1) =

1
2m + 2

; σ2
2m+1(Φ1) = 0.
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Moreover, since k ≥ 2 and k′ ≥ 2, by Remark 1 we have

δ2m(Φ2) =
2m + 1
2m + 3

; δ2m+1(Φ3) = 1;

with Φ2 = Ψ2m and Φ3 = Ψ2m+1 the appropriately re-scaled dictionaries.

IV. NUMERICAL STUDIES OF THE σ2
2m AND δ2m CONDITIONS

We now take a brief look at numerical solutions for values of σ2
2m and δ2m for which `p recovery can fail.

A. Large dimensional `p failing dictionaries

The analysis carried out so far, which relies on constructions for large dimensions m and N , shows that

sup
m,Φ

σ2
2m(Φ) = 1− 2ηp

2− p

inf
m,Φ

δ2m(Φ) =
ηp

2− p− ηp

where the supremum is over integers m and unit spectral norm `p failing dictionaries Φ, the infimum is over

integers m and `p failing row orthonormal dictionaries Φ ∈ RM×N with 2m ≤ M < N < M + 2m. This

provides two curves σ2(p) and δ(p) for which there exists `p failing dictionaries with σ2
2m above (respectively δ2m

below) or arbitrarily close to σ2(p) (resp. δ(p)). To compute these curves we need to solve for ηp in Equation (15).

For p ∈ {1, 2/3, 1/2}, this is a polynomial equation of degree d = 2/p ∈ {2, 3, 4} which roots have algebraic

expressions. In practice we rely on numerical solvers to compute ηp, σ2(p) and δ(p), which are displayed as a solid

line on Figure 3 and Figure 4.

The work of [15], [16] showed that there is a whole family of sparsity measures including `p that span between `0

and `1, and that solving (4) for p < 1 could offer gradually superior performance to `1 recovery when p decreases.

The results in [11] provided quantitative `p recovery conditions based on RIC. Here we see from Figure 4 that the

offending RIC grows very gently as p shrinks. This implies that, at least in terms of worst case RIP analysis over

all dictionaries, using a p slightly smaller than 1 does not provide a large benefit, and that one would need to rely

on a p ¿ 1 to expect a significant difference. However since solving (4) for p < 1 is non-convex such benefit will

dependent on the specific choice of optimisation algorithm. For example we will see in the section V that iterative

reweighted `1 techniques do not appear to provide uniform performance benefits beyond `1 minimisation.

These results may also seem at odds with a long history of empirical studies showing the benefits of `p optimisation

for sparse recovery dating back to [13], however we note first that empirical results generally indicate an average

performance bound rather than a uniform one and second the success of `p optimisation seems to be predominantly

associated with sparsity problems with a range of coefficient sizes, such as Gaussian distributed sparse coefficients,

where the `p algorithm is able to pick off the larger coefficients first. Note that successful recovery in `1 optimisation

is only a function of the signs of the coefficients [12] and thus is unable to exploit differences in coefficient size.

October 9, 2008 DRAFT



15

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

p

σ 2m2

σ
2m
2  values for which lp recovery can fail

guaranteed lp−success

lp−failing dictionaries exist

Fig. 3. A plot of the σ2
2m values for which `p recovery with unit spectral norm dictionaries can fail (solid). This result is sharp in that for

any (p, σ2) strictly above the line, a dictionary with σ2
2m = σ2 is guaranteed to recover m-sparse representations by solving (4), while for

any (p, σ2) strictly below the line we can find a dictionary with σ2
2m = σ2 for which `p recovery will fail on at least one m-sparse vector.

The dashed line corresponds to the values for the best failing 2× 3 dictionaries calculated in section IV-B.
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RICs for which lp recovery can fail: δ vs p
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Fig. 4. A plot of the RIC values, δ for which `p recovery can fail (solid) for any dictionary. Strictly above the line, for any (p, δ), we can

find a dictionary with δ2m = δ for which `p recovery will fail on at least one m-sparse vector. However, the result may not be sharp (except

for the special case of row orthonormal dictionaries with 2m > N − M , see Corollary 1) since δ2m and σ2
2m are only necessarily related

through the inequality (13). Thus there may also exist failing dictionaries below the line. The dashed line corresponds to the RIC values for the

re-scaled best failing 2x3 dictionaries in section IV-B.
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B. Low dimensional examples

Although our arguments above require N →∞ in order to approach the bound, in fact, it is very easy to construct

a specific low dimensional example that is very close to it. Consider a Φ ∈ R2×3 for which `p minimisation just

fails in the 1-sparse case. Select:

z =
1√

1 + 21−2/p
·




1

−2−1/p

−2−1/p


 (43)

and generate any Φ such that ΦT is the orthogonal complement to z. For example we can have:

Φ =




1√
1+22/p−1

21/p−1√
1+22/p−1

21/p−1√
1+22/p−1

0 1√
2

−1√
2


 (44)

For the `1 case this gives:

z =
1√
6




2

−1

−1


 (45)

and

Φ =
1√
6



√

2
√

2
√

2

0
√

3 −√3


 (46)

The RIC, δ2, that can fail for this (properly rescaled) low dimensional example is also plotted as a dashed line in

Figure 4. It was simply computed by considering the three 2×2 submatrices of Φ and computing their maximal and

minimal singular values. Note that for `1 this is within 0.01 of the general condition for failure (due, no doubt, to

the excellent engineering approximation of
√

2 ≈ 3/2: the offending z in (45) has the shape (31) for m = 1, L = 2,

i.e. with η = 1/2, while the optimum is for η1 =
√

2 − 1). The value of p for which ηp = 1/2 is optimal can

be found by numerically solving (1/2)2/p + 1 = 1/p. This gives p ≈ 0.839 for which the 2 × 3 construction is

actually optimum. Note that the two curves in Figure 4 touch at this value of p.

V. REWEIGHTED `1 IMPLEMENTATIONS FOR `p OPTIMISATION

It is important to distinguish between optimisation functions and recovery algorithms. All the results in the

previous sections have been derived for the recovery properties associated with the global minimum solutions for

(4) without any regard for how these might be obtained. In practise, solving (4) for p < 1 is non-trivial. When

p < 1 the cost function ceases to be convex and there are many local minima. One approach that has recently

been proposed [9], [10], [4], [11] is to attempt to solve (4) by solving a sequence of reweighted `1 optimisation

problems of the form:

ŷ(n) = argmin
y

‖Wny‖1 s.t. Φy = Φy?, (47)

where the initial weight matrix is set to the identity, W1 = Id, and then subsequently Wn is selected as a diagonal

positive definite weight matrix that is a (possibly iteration dependent) function of the previous solution vector,
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Wn = fn(y(n−1)). At any step, the solutions to the convex optimisation problem (47) can be characterised by the

necessary and sufficient property

∀z ∈ N (Φ)\{0}, |〈Wnz, sign(ŷ(n))〉| ≤ ‖(Wnz)Γn
‖1 (48)

where Γn denotes the set indexing the zero entries in ŷ(n).

In [4], as an approximation to the `0 minimisation problem, the following reweighting function was proposed:

Wn(k, k) =
(
εn + |y(n−1)

k |
)p−1

(49)

for p = 0 and some small εn > 0. Here Wn(k, k) denotes the kth diagonal element of Wn. In [11] the authors

consider the same weighting function but including the full range of 0 ≤ p < 1. Note that the inclusion of the

εn term is crucial as it keeps Wn(k, k) bounded and ensures that a zero valued component yi is able to become

non-zero again at some subsequent iteration. Candès et al. [4] discuss using either a fixed εn or selecting it, while

Foucart and Lai [11] argue that, at least in terms of the associated cost functions, letting εn → 0 converges to a

solution for (4). It is also noted in [4] that there are various other reweighting strategies that could be deployed,

some of which may not even be associated with a specific cost function.

A natural question to ask is: what is the guaranteed performance of such algorithms? In order to consider the

widest possible set of reweighting schemes we define the following that we consider to encompass all ‘reasonable’

reweighting schemes.

Definition 2 (Admissible reweighting schemes): A reweighting scheme is considered to be admissible if, W1 =

Id and if, for each n, there exists a wn
max < ∞ such that for all k, 0 ≤ Wn(k, k) ≤ wn

max and Wn(k, k) = wn
max ⇐

ŷ
(n−1)
k = 0.

The next two propositions shed some light on what performance guarantees we might expect from such schemes.

Proposition 3 (Iteratively reweighted `1 is not worse than `1): Let Φ be an arbitrary dictionary and Ω an arbi-

trary support set. If `1 recovery is successful for all vectors with support set Ω, then recovery using any iteratively

reweighted `1 algorithm with an admissible reweighting scheme is also successful for all vectors with support Ω.

Proof: Assume that Ω is a support set for which `1 is guaranteed to succeed: i.e., ‖zΩ‖1 < ‖zΩc‖1, ∀z ∈
N (Φ)\{0}. Since W1 = Id, for any y? supported in Ω, ŷ(1) is the `1 minimiser therefore ŷ(1) = y?. As a result,

Ωc ⊂ Γ1, and for k ∈ Ωc, W2(k, k) = w2
max, therefore

∀z ∈ N (Φ)\{0}, |〈W2z, sign(ŷ(1))〉| ≤ w2
max · ‖zΩ‖1 < w2

max · ‖zΩc‖1 ≤ ‖(W2z)Γ1‖1.

It follows that ŷ(2) = ŷ(1) and iteratively one gets ŷ(n) = y? for all n.

Proposition 3 indicates that the reweighting strategy cannot damage an already successful solution. However we

also have the following negative result.

Proposition 4 (Iteratively reweighted `1 is not uniformly better than `1): Let Φ ∈ R(N−1)×N be a minimally

redundant dictionary of maximal rank N − 1. Let Ω be a support set for which `1 recovery fails. Then any

iteratively reweighted `1 algorithm with an admissible reweighting scheme will also fail for some vector y with

support Ω.
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Proof: Let Φ ∈ R(N−1)×N be a minimally redundant dictionary with maximal rank and let z ∈ N (Φ) be an

arbitrary generator of its null space. Consider any set Ω for which `1 recovery can fail, i.e., ‖zΩ‖1 ≥ ‖zΩc‖1. Let

y? = zΩ. Because of the dimensionality of the null space, any representation satisfying Φy = Φy? takes the form

y = zΩ − αz = (1− α)zΩ − αzΩc . For any weight

‖Wny‖1 = |1− α| · ‖WnzΩ‖1 + |α| · ‖WnzΩc‖1, α ∈ R

hence there are only two possible unique solutions to (47), corresponding to α = 0 and α = 1. Since `1 fails to

recover y?, we have ŷ(1) = −zΩc , therefore Ω ⊂ Γ1 and W2(k, k) = w2
max, k ∈ Ω. 2 It follows that

|〈W2z, sign(ŷ(1))〉| ≤ w2
max‖zΩc‖1 ≤ w2

max‖zT ‖1 ≤ ‖(W2z)Γ1‖1

and we obtain that ŷ(n) = −zΩc for all n.

Combining this with the results from section III immediately gives Theorem 2.

VI. DISCUSSION

In this paper we have quantified values of the RIC, δ2m for which there exist dictionaries where minimisation of (4)

for some 0 < p ≤ 1 will fail to recover at least one m-sparse vector. This result is in some sense complementary

to existing positive results [3], [11] and leaves limited room for improvement. Indeed for the special case of

appropriately re-scaled row orthonormal dictionaries our negative result becomes sharp when 2m > N −M .

On the other hand we have also shown that there exist minimally redundant row orthonormal dictionaries with

RIC, δ2m arbitrarily close to one for which `p recovery is successful for any p.3 This should not be that surprising,

RIP recovery conditions (be they for `1 or `p) come from a worst case analysis with respect to several parameters:

worst case over all coefficients for a given sign pattern; worst case over all sign patterns for a given support; worst

case over all supports of a given size; and worst case over all dictionaries with a given RIC. Our results emphasize

the pessimism of such a worst case analysis.

In the context of compressed sensing [6], [3], there is also the desire to characterise the degree of undersampling

(M/N ) that is possible while still achieving exact recovery. Here RIP can be used to show that certain random

matrices with high probability guarantee exact recovery with an undersampling of the order (m/N) log(N/m).

However this result is indirect, firstly due to the worst case analysis discussed above and then secondly through the

application of the concentration of measure [1]. A more direct approach, characterising the phase transition between

exact recovery and undersampling for classes of random matrices, seems to provide a much clearer indication of

the relationship between undersampling and recovery [8]. Of course, deriving expressions for such phase transitions

2If the solution to (47) is not unique then all values of α between 0 and 1 result in valid solutions and the algorithm has no means for

determining the correct one. We therefore make the pessimistic assumption that the algorithm will select the incorrect representation associated

with α = 1.
3When the dictionary is not row orthonormal it is trivial to find such dictionaries by post-multiplying any `p successful dictionary with a

matrix A ∈ RM×M that introduces the required ill-conditioning (i.e. Φ → AΦ) to make δ2m > 1− ε. As the null space is unaffected by this

action `p recovery is still maintained.
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when p 6= 1 is likely to be a very challenging problem. Interestingly, the ‘strong’ phase transition of Donoho and

Tanner [8] indicates that as M/N → 1 most miminally redundant row orthonormal dictionaries will fail when

m/M ≈ 0.18. In contrast, our result for the `1-failing minimally redundant row orthonormal dictionary with the

smallest RIC is associated with m/M → 1/(
√

2 + 2) ≈ 0.29 and so is clearly not indicative of the boundary

behaviour.

Foucart and Lai [11] have also presented guaranteed recovery results for general `p minimisation with 0 < p ≤ 1.

These results are couched in terms of δ2m+2 rather than δ2m and are also explicitly dependent upon m. In contrast,

the general result in Theorem 3 is independent of m though this could be refined to include m-dependence. Indeed

for small m and p the positive result in [11] actually exceeds the negative bound computed from Theorem 3.

However, we also note that for fixed p the m-dependent results rapidly converge to the m-independent result of

δ2m+2 < 2(3−√2)/7, which is slightly weaker than their `1 recovery result since δ2m+2 ≥ δ2m. Theorem 3 seems

to suggest that, at least in terms of worst case RIP analysis, there is limited benefit in reducing p a little below one.

Reducing p < 1 also introduces other issues. As the cost function is no longer convex the performance of the

`p optimisation will be a function of the minimisation algorithm used. Our analysis of the iterative reweighted `1

algorithm (Theorem 2) shows that in terms of worst case RIP analysis there appears to be no gain in using this

instead of the classical unweighted `1 minimisation.

Empirical evidence with iterative reweighting suggests that there can be substantial improvement over unweighted

`1. However, while this might again be put down to the pessimistic nature of the worst case RIP analysis, we also

suspect that the benefits of such algorithms stem from typically having a range of coefficient scales and that

the performance of iterative reweighted `1 algorithms is probably highly coefficient dependent. Such non-uniform

performance cannot be captured by a worst case performance analysis.

Although we have not explicitly considered it here, the RIP also plays a role in quantifying the robustness of `p

recovery to observation noise [3], [11], i.e. when x = Φy + ε. However, as noted here and in [11] exact recovery

is independent of dictionary scaling, Φ → cΦ, while robustness to noise is directly related to the scale of the

dictionary. It is possible to define the error relative to the isometry constants as in [11], however it could be argued

that a fairer measure of robustness would be in terms of absolute error when the dictionary is also constrained to

have some physically reasonable property. For example, one might require that the dictionary or ‘sensing matrix’

cannot amplify observations, in other words ‖|Φ|‖ ≤ 1. Interestingly, in this case, the notion of asymmetric RIC

that we introduced in section II becomes the relevant measure. When viewed in this regard the existing robustness

results for random matrices [3], [11] become significantly more pessimistic. This is because such matrices (e.g.

random unit spectral norm orthoprojectors) typically shrink sparse vectors by a factor of
√

M/N and to obtain

an appropriate RIC requires re-scaling. However, this in turn implies that typically ‖|Φ|‖ ≈
√

N/M . Hence the

robustness of unit spectral norm random matrices to observation error scales inversely proportional to the square

root of the degree of undersampling.

We finally note that there are a couple of straightforward extensions that we have not pursued in order to keep the

paper reasonably concise. First, it would be possible to extend the results in Remark 1 and Corollary 1 to include
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the factor A/B associated with non-tight frame bounds. Second, our main results are derived in terms of σ2
k and

δk for k = 2m. However, there are a number of positive results based on RICs associated with larger index sets

(as in [11]), k > 2m. Results similar to Lemma 4 and consequently Theorem 3 in terms of such sets should also

be straightforward.

ACKNOWLEDGEMENTS

This research was partly supported by EPSRC grant D000246/1. The authors would like to thank Thomas Blu-

mensath and Jared Tanner for many interesting discussions on `1 recovery and discussion of [3]. MED acknowledges

support of his position from the Scottish Funding Council and their support of the Joint Research Institute with the

Heriot-Watt University as a component part of the Edinburgh Research Partnership.

REFERENCES

[1] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof of the restricted isometry property for random matrices.” To

appear in Constructive Approximation, 2008.

[2] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency

information.” IEEE Trans. Info. Theory, vol. 52, pp. 489–509, Feb 2006.

[3] E. Candès, “The Restricted Isometry Property and its implications for Compressed Sensing.” Comptes Rendus de l’Académie des Sciences,

Paris, Série I, 346, 589–592, 2008.

[4] E. J. Candés, M. B. Wakin and S. P. Boyd, “Enhancing sparsity by reweighted ell-1 minimization”, to appear in J. Fourier Anal. Appl.,

2008.

[5] S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM J. Sci Comp., vol. 20, no. 1, pp. 33-61,

1999.

[6] D. Donoho,“Compressed Sensing.” IEEE Trans. Info. Theory, vol. 52, no. 4, pp 1289-1306, April, 2006.

[7] D. L. Donoho and M. Elad, “Optimally sparse representation from overcomplete dictionaries via `1 norm minimization,” Proc. Natl. Acad.

Sci. USA, vol. 100, no. 5, pp. 2197-2002, Mar. 2002.

[8] D. Donoho and J. Tanner, “Counting faces of randomly-projected polytopes when the projection radically lowers dimension”, to appear

in Journal of the AMS, 2008.

[9] M. Figueiredo and R. Nowak, “A bound optimization approach to wavelet-based image deconvolution”, In Proc. IEEE International

Conference on Image Processing — ICIP’2005, 2005.

[10] M. Figueiredo, J. Bioucas-Dias and R. Nowak, “Majorization-Minimization Algorithms for Wavelet-Based Image Restoration”, IEEE Trans.

Image Processing, vol. 16, no. 12, pp. 2980–2991, Dec. 2007.

[11] S. Foucart and M.-J. Lai,“Sparsest solutions of underdetermined linear systems via `q-minimization for 0 < q ≤ 1.” Submitted to Applied

and Computational Harmonic Analysis, 2008.

[12] J.-J. Fuchs, “On Sparse Representations in Arbitrary Redundant Bases”, IEEE Trans. Inform. Theory, Vol. 50, No. 6, pp. 1341–1344, June

2004.

[13] I.F. Gorodnitsky and B.D. Rao, “Sparse signal reconstruction from limited data using FOCUSS: A re-weighted norm minimization

algorithm.” IEEE Trans. on Signal Processing, vol. 45, pp. 600–616, March 1997.

[14] R. Gribonval and M. Nielsen, “Sparse decompositions in unions of bases.” IEEE Trans. Info. Theory, vol. 49, no. 12, pp 3320-3325, Dec

2003.

[15] R. Gribonval and M. Nielsen, “On the strong uniqueness of highly sparse expansions from redundant dictionaries.” In Proc. Int Conf.

Independent Component Analysis (ICA’04), Sep 2004.

[16] R. Gribonval and M. Nielsen, “Highly sparse representations from dictionaries are unique and independent of the sparseness measure.”

Applied and Computational Harmonic Analysis, vol. 22, no. 3, pp 335–355, May 2007. [Technical report October 2003].

[17] J. Tropp, “Just relax: Convex programming methods for identifying sparse signals.” IEEE Trans. Info. Theory, vol. 51, no. 3, pp. 1030-1051,

Mar 2006.

October 9, 2008 DRAFT


