
COMPRESSIVE POWER SPECTRAL DENSITY ESTIMATION

Michael Lexa, Mike Davies, John Thompson∗

Institute for Digital Communications
The University of Edinburgh

Edinburgh, UK

Janosch Nikolic

Autonomous System Lab
ETH Zürich

ABSTRACT

In this paper, we consider power spectral density estimation of ban-
dlimited, wide-sense stationary signals from sub-Nyquistsampled
data. This problem has recently received attention from within the
emerging field of cognitive radio for example, and solutionshave
been proposed that use ideas from compressed sensing and thethe-
ory of digital alias-free signal processing. Here we develop a com-
pressed sensing based technique that employs multi-coset sampling
and produces multi-resolution power spectral estimates atarbitrar-
ily low average sampling rates. The technique applies to spectrally
sparse and nonsparse signals alike, but we show that when thewide-
sense stationary signal is spectrally sparse, compressed sensing is
able to enhance the estimator. The estimator does not require signal
reconstruction and can be directly obtained from a straightforward
application of nonnegative least squares.

Index Terms— power spectral density estimation, multi-coset
sampling, compressed sensing, nonnegative least squares

1. INTRODUCTION

A number of compressed sensing (CS) structures have been pro-
posed for sub-Nyquist sampling of continuous-time signals[1–4].1

All of these systems extend CS theory and serve as viable mecha-
nisms to “compressively” acquire these types of signals. Concur-
rently, research has focused on finding new ways to directly pro-
cess CS measurements (once acquired) to infer or extract informa-
tion without having to reconstruct the original signal or its Nyquist
samples. For example, in [5] Davenport et al. consider the funda-
mental tasks of detecting, classifying, and estimating deterministic
signals in Gaussian noise from within the “compressed” domain. To-
gether, these two lines of research attempt to realize one ofthe cen-
tral goals of CS theory—to directlyacquire and processthe salient
information in a signal (where possible) without intermediary data
compression or signal reconstruction steps and in turn, increase the
efficiency and the capability of current signal acquistion systems.

In this paper, we further develop and blend these ideas and pro-
pose a novel “compressive” power spectral density (PSD) estimator
for sub-Nyquist sampled wide-sense stationary (WSS) random sig-
nalsx(t). The method utilizes the multi-coset (MC) sampler, origi-
nally proposed by Feng and Bresler [1], and relies on the factthat the
Fourier transform of a WSS signal is a (nonstationary) whitenoise
process [6] to form a linear system of equations whose solutions
represent the power in various spectral bands ofx(t). The estimates
are thereforefinite resolution approximationsto the true PSD that
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1We include MC sampling in this list because of its similiarities to the

more recent CS techniques, despite the fact that it significantly predates CS.

can be computed atarbitrarily low sampling rates. We also show
that the method’s solutions fall within two categories depending on
whether one assumesx(t) is spectrally sparse. (The notion of spec-
tral sparsity is defined in Section 2.) A surprising discovery is that
the proposed PSD estimator can take the form of a nonnegativeleast
squares estimate regardless of the sparsity ofx(t). Because of the
structure of the problem, we can recover a sparse solution (whenx(t)
is assumed sparse) by simply finding a least squares solutioninstead
of resorting to more complicated sparse approximation techniques,
e.g.ℓ1 minimization.

CS based spectral estimation has recently gained attentionand
found application in cognitive radio systems, e.g., [7], where they
are used to monitor a crowded radio spectrum searching for underuti-
lized bandwidth. The proposed estimator also shares many aspects
with digital alias-free signal processing (DASP) [8,9], and in partic-
ular, can be viewed as a type of DASP spectral estimator. The link
with DASP is briefly examined in Sections 2 and 3.

We begin by giving a brief overview of alias-free and multi-coset
sampling in Section 2. Then, in Section 3, we present the PSD es-
timator and provide two numerical examples in Section 4. We con-
clude in Section 5.

2. ALIAS-FREE AND MULTI-COSET SAMPLING

Alias-free sampling. Alias-free sampling is a type of non-uniform
sampling technique where the set of sampling instants{tn} satis-
fies certain properties such that the spectrum of the resulting dis-
crete WSS process avoids aliasing and/or yields consistentPSD esti-
mates [8,9]. Typically, the set{tn} is a stochastic point process (e.g.,
a Poisson point process) that is statistically independentof the signal.
The advantage of such methods, in comparison to uniform sampling,
lies in the fact that aliasing can be avoided even when the average
sampling rate falls below the Nyquist rate. In fact, consistent alias-
free PSD estimators are possible with arbitrarily low sampling rates
(although such estimates may require long acquistion times) [8].

Alias-free PSD estimators often take a form similar to the stan-
dard periodogram defined for uniform sampling. For example,let-
ting x(t) be a real WSS stochastic process with zero mean and PSD
Px(ω), the following estimator̂Px(ω) is known to be a consistent
estimate ofPx(ω) when the sampling set{tn} is a Poisson point
process [8]:

P̂x(ω) =
1

πλN

N−1∑

n=1

N−n∑

k=1

x(tk)x(tk+n)

wN (tk+n − tk) cos(ω(tk+n − tk)),

whereλ denotes the rate parameter of the Poisson process and the
window functionwN (t) controls the variance of the spectral esti-
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Fig. 1. Multi-coset sampler implemented as a multi-channel system.

mate. The proposed method outlined below accomplishes the same
feat as alias-free PSD estimators in that it produces PSD estimators
at arbitrarily low sampling rates using MC sampling and CS recov-
ery techniques.

Multi-coset sampling. Multi-coset sampling is a periodic nonuni-
form sub-Nyquist sampling technique for acquiring sparse multi-
band signals [1]. Amultiband signalx(t) is a bandlimited,
continuous-time, squared integrable signal that has all (or most)
of its energy concentrated in one or more disjoint frequencybands
(of positive Lebesgue measure). Aspectrally sparsemultiband
signal is a multiband signal whose spectral measure is smallrela-
tive to the overall signal bandwidth. If, for instance, all the active
bands have equal bandwidthB Hz and the signal is composed of
K disjoint frequency bands, then a sparse multiband signal isone
satisfyingKB << W , whereW/2 is the bandwidth ofx(t) andW
is therefore the Nyquist frequency.

For the remainder of this section, letx(t) denote a deterministic
sparse multiband signal. For a fixed time intervalT that is less than
or equal to the Nyquist period and for a suitable positive integerL,
MC samplers samplex(t) at the time instantst = (kL + ci)T for
1 ≤ i ≤ q, k = 0, 1, . . . . The time offsetsci are distinct, positive
real numbers less thanL and are known collectively as the multi-
cosetsampling pattern. The system thus collectsq ≤ L samples
in LT seconds, or equivalently, exhibits an average sampling rate of
q/LT Hz. Here we setT equal to the Nyquist periodT = 1/W ,
thereby referencing the system’s sampling rate to the Nyquist rate.
Multi-coset samplers are parameterized byq, L, and{ci}, and the
system design depends on conditioning them properly to ensure suc-
cessful recovery ofx(t) from the output samples. MC samplers are
most easily implemented as multichannel systems where channel i
shiftsx(t) by ci/W seconds and then samplesuniformly at W/L
Hz (see Figure 1).

Using standard properties of the Fourier transform and the
discrete-time Fourier transform [10], we obtain a frequency domain
description of the output sequencesyi(k) = x(kL/W + ci/W ),

Yi(e
jω L

W ) =

W

L

⌊
L
2
( ω
πW

+1)
⌋

∑

m=−
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L
2
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πW
)
⌋
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m)ej

ci
W

(ω−2π W
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m),

whereYi(e
jω L

W ) denotes the discrete-time Fourier transform of the
sequenceyi(k), X(jω) denotes the Fourier transform ofx(t), and
⌊·⌋ denotes the floor function. The summation limits are finite for a

givenω becausex(t) is assumed bandlimited. BecauseYi(e
jω L

W ) is
periodic with period2πW/L, we can, without loss of information,

restrictYi(e
jω L

W ) to one period. Here we choose to restrictω to
[−πW/L, πW/L) to obtain
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for i = 1, . . . , q, where1[·) denotes the indicator function. Note
that the restriction to[−πW/L, πW/L) removes the dependence

onω in the summation limits since within this intervalYi(e
jω L

W ) is
a linear combination of a particular (finite) set of spectralsegments
of x(t). We can therefore write this expression in a matrix-vector
formulation

z(ω) = Φs(ω) (1)

where

zi(ω) = e−j
cq
W

ωYi(e
jω L

W )1[−πW
L

,πW
L

) (2)

Φi,l =
W

L
e−j 2π

L
ciml (3)

sl(ω) = X(ω − 2πW
L
ml)1[−πW

L
,πW

L
) (4)

for i = 1, . . . , q, l = 1, . . . , L, andml = −
⌊
1
2
(L+ 1)

⌋
+ l.

In MC sampling, (1) serves as the base equation for the recon-
struction ofx(t). Support recovery, however, relies on forming the
covariance matrix ofz(ω). As shown in the next section, our pri-
mary interest in the covariance matrix is not in using it to recover the
support ofs(ω), but rather using it to estimate the PSD ofx(t).

3. MULTI-COSET PSD ESTIMATION OF WSS SIGNALS

Key ideas. Let x(t) be a complex WSS process with PSDPx(ω)
and letRz denote the integrated covariance matrix2 of z(ω),

Rz ,

∫ π W
L

−πW
L

E[z(ω)zH(ω)] dω (5)

= Φ

[∫ π W
L

−π W
L

E[s(ω)sH(ω)] dω

]

Φ
H (6)

= ΦRs Φ
H , (7)

whereE[·] denotes the expectation operator,H denotes Hermitian
transpose andRs is the integrated covariance matrix of the spectral
segments ins(ω). We begin by recalling the fact that the Fourier
transform (appropriately defined) of a WSS random processx(t) is
itself a nonstationary white noise process (in frequency) with covari-
ance function [6, p. 418],

RX(ω, ν) = E[X(ω)X∗(ν)] = 2πPx(ω)δ(ω − ν), (8)

where∗ denotes complex conjugacy. This fact, along with (4), imply
that the integrand in (6) equals

E[sk(ω)s
∗

l (ω)] = 2πP (l)
x (ω)δk,l, (9)

whereδk,l denotes the Kronecker delta function andP
(l)
x (ω) repre-

sents the PSD of the random process

sl(t) = x(t)ej2π
W
L

mlt ⋆ W
L

sinc(πW
L

t),

2Unlike the formulations in [1], we introduce expectations here because
the signals are random processes.



i.e., P (l)
x (ω) is the PSD of a shifted, ideally low pass filtered ver-

sion ofx(t). To understand (9), consider the case whenk = l and
ω ∈ [−πW/L, πW/L). Then

E[|sl(ω)|
2] = E

[∣∣X(ω − 2πW
L
ml)

∣∣2
]

= 2πP (l)
x (ω).

Whenk 6= l, it follows directly from (8) thatE[sk(ω)s∗l (ω)] = 0.
ThusRs is a matrix whose main diagonal elements represent the
power in theL spectral segments ofx(t),

[
−πW + (l − 1)

2πW

L
,−πW + l

2πW

L

)
, l = 1, . . . , L

and whose off-diagonal elements are zero. Collectively, therefore,
the diagonal elements ofRs form a finite resolution approximation
to Px(ω). This fact is the basis of the estimator introduced below:
We estimateRz from a finite set of MC samples and invert (7) to
obtain estimates of the total power within these spectral segments.
We first, however, further consider the structure ofRs.

Exploiting covariance structure. The diagonal nature ofRs has
significant implications for how we should solve (7). With the new
indexingk = q(a− 1) + b (1 ≤ a, b ≤ q), let us rewrite (7) as

uk , [Rz]a,b =
L∑

l=1

Φa,lΦ
∗

b,l[Rs]l,l

= (W/L)2
L∑

l=1

e−j 2π
L

(ca−cb)ml [Rs]l,l (10)

where againml =
⌈
− 1

2
(L+ 1)

⌉
+ l. We can write (10) concisely

in matrix-vector form,
u = Ψv, (11)

whereu = (u1, . . . ,uq(q−1)/2+1), Ψk,l = (W
L
)2e−j 2π

L
(ca−cb)ml ,

and v = diag(Rs) with k = 1, . . . , q(q−1)
2

+ 1 (q odd) and

l = 1, . . . , L. To determineRs from Rz and hence inferP (l)
x (ω),

we need to solve (11). This requires thatRank(Ψ) ≥ L. The
maximum number of distinct differencesca − cb equalsq(q−1)

2
+1,

therefore we knowRank(Ψ) ≤ q(q−1)
2

+ 1.
As we are assuming thatx(t) is complex while we know thatv

must be real we can double the number of equations by solving:
[

Re(u)
Im(u)

]
=

[
Re(Ψ)
Im(Ψ)

]
v. (12)

Suppose the MC sampling pattern{ci} is chosen such that

Rank

([
Re(Ψ)
Im(Ψ)

])
= q(q − 1) + 2. (13)

Then as long asq andL satisfyq(q−1)+2 ≥ L, we can invert (12)
using the pseudoinverse ofΨ and retrieveRs fromRz. If (13) holds
asL grows, it is clear that we can retrieve a finite resolution approxi-
mation toPx(ω) with any sampling rate, given appropriateq values.
If either L or q is held fixed while the other is allowed to vary, the
above inequality establishes a minimum average sampling rate that
is required to successfully obtain a PSD approximation.

Exploiting covariance structure and signal sparsity. Suppose
now Px(ω) is the PSD of a sparse multiband signal. As such,v

admits a sparse representation for which we can solve even when

q(q − 1) + 2 < L, provided certain conditions onΨ and the size
of the spectral support are satisfied. We do not pursue the recovery
conditions here; we instead focus on the derivation of a CS style
spectral approximation in this setting.

A sparse representation forv can in theory be computed by solv-
ing theℓ0 minimization problem,̂v = argmin‖v‖0 subject to (12).
It is thus tempting, following standard compressed sensingpractice,
to replace it with a simplerℓ1 minimization problem. This step is un-
necessary, however, because (12) has additional structurethat sim-
plifies the problem.

First, observe that the unknown power spectrumv is by defini-
tion nonnegative. Second, recall that the rows ofΨ enumerate the
possible differencesca − cb and that the row representing the dif-
ferenceca − cb = 0 is a row of ones. The first point means that
we are fundamentally interested in solving a nonnegative sparse rep-
resentation problem. The second point serendipitously allows us to
compute a sparse solution using nonnegative least squares without
explicity imposing a sparsity constraint [11]. The reason is that the
row of ones measures theℓ1 norm ofv, and thus a nonnegative least
squares solution automatically promotes a sparse solution—we in
essence get the a sparse solution for free.

PSD estimation. We now want to estimate the multiscale ap-
proximation toPx(ω) outlined above using a finite set of MC
samples{yi(k)}, k = 0, . . . , N − 1, i = 1, . . . , q. To do so, we
re-express (5) in terms of the samples. By applying the discrete-time
Fourier transform’s orthogonality property [10, pp. 90-91], it can be
shown that

[Rz]l,m = 2π
W

L

∞∑

k=−∞

E

[
yl(k −

cl
L
)y∗

m(k −
cm
L

)
]
,

where the notationyl(k − cl
L
) denotes a fractional shift of the se-

quenceyl(k). With a finite number of samples, we estimateRz as

[R̂z]l,m = 2π
W

L

N−1∑

k=0

yl(k −
cl
L
)y∗

m(k −
cm
L

), (14)

where here the fractional delays can be computed by a fractional
delay filter at baseband frequencies.R̂z is then used with the meth-
ods described above to invert (12) to obtain the finite resolution PSD
estimateŝv. This two step process comprises our proposed PSD
estimator. Like DASP, this estimator can yield PSD estimates of ar-
bitrary resolution (scale) and at arbitrarily low samplingrates.

There are two sources of error for this estimator. The first derives
from estimatingRz from a finite amount of data. The second derives
from the approximate least squares solution. It is straightward to
show thatR̂z is an asympotically unbiased estimator ofRz; thus
asN increases the PSD estimate becomes more accurate on average
(provided (12) can be inverted).

4. NUMERICAL EXAMPLES

Example 1. Let x(t) be white Gaussian noise bandlimited to500
Hz with two 40 Hz stop bands (W = 1000 Hz). Consider a25
channel MC sampler where each channel samplesx(t) at a rate of
10 Hz over a 2000 sec window (q = 25, L = 100, average sampling
rate of250 Hz). In this scenario, the channels sample at a rate that
is ten times smaller than the Nyquist rate with the resolution of the
estimator beingW/L = 10 Hz. Becauseq(q − 1) + 2 ≥ L in
this example, we can compute the estimator regardless of thespec-
tral sparsity ofPx(ω) and can invert (12) using either the pseudoin-
verse or a nonnegative least squares approach. Figure 2 illustrates
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Fig. 2. The plots show two compressive PSD estimates in comparisonto periodograms (top panels) computed from a realization ofthe original
(simulated) random processx(t). Here, the periodograms can be considered to be the true mulitscale approximations that the compressive
estimates are estimating. The left hand plots derive from a non-sparse PSD with spectral holes; the right hand plots derive from a sparse
multiband signal.

these facts. One could identify this example as a rudimentary cog-
nitive radio scenario, where the task is to identify spectral “holes”
to exploit. Figure 2 shows two finite resolution periodograms com-
puted from the original (simulated) input random processx(t). For
our purposes, these periodograms can be considered to be the“true”
representations of the finite resolution PSD approximations the com-
pressive PSD estimates are estimating. Comparing the compressive
PSD estimates to these periodograms shows that the compressive es-
timates may be more than sufficient to detect spectral holes.

Example 2. The second example is a variation of the first where
we decrease the MC sampling rate by increasingL such thatq(q −
1) + 2 < L (L = 800), and we changex(t) to be a sparse multi-
band signal. The resultant channel sampling rate is approximately
1.5 Hz with a system average sampling rate of about36 Hz. (This
rate is about half the minimal Landau rate of80 Hz.) As expected,
Figure 2 shows that the pseudoinverse fails to invert (12) because
q(q − 1) + 2 < L, but the nonnegative least squares estimator pro-
duces an estimate that can accurately identify the active bands. We
stress that in this case the nonnegative least squares derived estimate
continues to improve as more samples are taken, but the errors in the
pseudoinverse derived estimate are systematic and remain irrespec-
tive of the number of samples.

5. CONCLUSION

In this paper, we presented a preliminary development of a CSbased
estimator that estimates the PSDs of WSS processes at multiple res-
olutions (scales) and at arbitrarily low sampling rates. The approach
relies on the spectral characteristics of WSS processes, MCsam-
pling, and the particular form of the linear system of equations that
describe multi-coset sampling. The estimator applies to both spec-
tral sparse and non-sparse PSDs, yet can take advantage of CStech-
niques when the true PSD is sparse. The method also interrelates the
fields of CS and DASP by showing that the multi-coset sampler can
be used to perform a DASP-type spectral estimation. The examples
demonstrate the potential effectiveness of the method, buta more
thorough analysis of the estimator’s consistency is needed.

Lastly, this estimation technique can, in principle, be extended to
other CS sampling structures. In particular, the modulatedwideband
converter [4] operates on the same principles as the MC sampler
and results in nearly the same Fourier description. Thus, despite
the differences in the systems’ sampling mechanisms, it should be

possible to develop a similar estimator for the modulated wideband
converter.
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