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SUMMARY

Compressed sensing has motivated the development of numerous sparse approximation algorithms designed
to return a solution to an underdetermined system of linear equations where the solution has the fewest
number of nonzeros possible, referred to as the sparsest solution. In the compressed sensing setting, greedy
sparse approximation algorithms have been observed to be both able to recovery the sparsest solution for
similar problem sizes as other algorithms and to be computationally efficient; however, little theory is known
for their average case behavior. We conduct a large scale empirical investigation into the behavior of three
of the state of the art greedy algorithms: NIHT, HTP, and CSMPSP. The investigation considers a variety of
random classes of linear systems. The regions of the problem size in which each algorithm is able to reliably
recovery the sparsest solution is accurately determined, and throughout this region additional performance
characteristics are presented. Contrasting the recovery regions and average computational time for each
algorithm we present algorithm selection maps which indicate, for each problem size, which algorithm
is able to reliably recovery the sparsest vector in the least amount of time. Though no one algorithm is
observed to be uniformly superior, NIHT is observed to have an advantageous balance of large recovery
region, absolute recovery time, and robustness of these properties to additive noise and for a variety of
problem classes. The algorithm selection maps presented here are the first of their kind for compressed
sensing. Copyright c© J.D. Blanchard and J. Tanner.
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1. INTRODUCTION

Compressed sensing [1, 2] is a technique where the prior knowledge that data is compressible
allows for the data to be acquired with fewer measurements than would otherwise be necessary.
The resulting reduced number of measurements is proportional to the desired end compression rate
and can therefore result in dramatic savings when fully measuring the data set has some significant
underlying cost. In its simplest form, compressed sensing can be expressed in terms of linear
algebra. Let x ∈ Rn be a vector with k nonzero entries (referred to as k sparse) and letA be anm× n
matrix whose m rows represent inner products used to acquire the measurements y = Ax ∈ Rm. If
one is willing to take a full set ofm = nmeasurements, the vector can be acquired by measuring the
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entries in x directly with the n× n identity matrix (A = I) so that y = Ax = Ix = x. In contrast, if
one knew before hand the location of the k nonzero entries one could simply measure those k values
similarly. While one often knows a priori that a vector has few nonzeros (or few large entries), one
rarely knows the location of the nonzeros requiring more than k measurements. Thus, the number
of measurements, m, satisfies k < m < n.

When the location of the nonzeros is unknown one can formulate the recovery of the sparse vector
x from knowledge of A and the measurements y = Ax as the combinatorial optimization problem

min
z∈Rn

‖z‖0 subject to y = Az (1)

where ‖z‖0 denotes the number of nonzeros in the vector z. A naive method for solving (1) is to
begin by checking if there is a single column of A that can be used to represent y, failing this to
check if there is any combination of two columns ofA that can be used to represent y, and increasing
the number of columns under consideration until a solution is determined. As A is underdetermined
it is always possible to find a solution with m or fewer nonzeros that will satisfy (1). Unfortunately
this exhaustive search is computationally implausible for all but the smallest values of n.

Much of the development of compressed sensing has focused on the design and analysis of
computationally efficient algorithms which can solve (1). An intensively studied technique is to
replace (1) by the convex relaxation of the objective

min
z∈Rn

‖z‖1 subject to y = Az (2)

in which case (2) can be recast as a linear program and solved using well developed, off-the-
shelf software [3, 4, 5] or algorithms more recently designed specifically for compressed sensing
[6, 7, 8, 9]. The equivalence of when the solution to (2) will be identical to the solution to (1)
has been fully characterized by Donoho in [10, 11] with precise sampling theorems derived. In
particular for A with entries drawn Gaussian i.i.d., precise values of ρ(m/n) are derived so that
for k < m · ρ(m/n) the solution to (2) will coincide with the solution to (1); moreover, when
k > m · ρ(m/n) the solution to (2) is typically observed to be different from the solution to (1).
The abrupt change in the probability of recovery for an algorithm is referred to as a phase transition
and the curve ρ(m/n) denoting the transition is referred to as a phase transition curve. Other notable
examples of precise sampling theorems have been derived for similar formulations such as: robust
variants of (1) and (2) by Xu and Hassibi [12, 13], inclusion of nonnegativity by Donoho and Tanner
[14, 15, 16], uniqueness of solutions with bound constraints by Donoho and Tanner [17], recovery
of low rank matrices by Recht, Xu and Hassibi [18], block sparse signals by Stojnic [19], and
equivalence to the state evolution of message passing algorithms by Donoho, Maleki, and Montanari
[20, 21]. Large-scale empirical testing has shown that many of these results hold for many more
matrix ensembles than the Gaussian ensemble implied by the theory [22, 23].

A second line of compressed sensing algorithm development has considered algorithms which
attempt to directly solve (1) or a noise resistant extension such as

min
z
‖y −Az‖ subject to ‖z‖0 ≤ k. (3)

Examples of such algorithms which have been observed to perform well in testing include
Compressive Sampling Matching Pursuit (CoSaMP) [24], Subpace Pursuit (SP) [25], Iterative
Hard Thresholding (IHT) [26], Normalized Iterative Hard Thresholding (NIHT) [27], and Hard
Thresholding Pursuit (HTP) [28] though this list is far from exhaustive. Each of these algorithms
has been analyzed using techniques such as the restricted isometry property [29] and have been
proven to recover the solution to (1) for a wide class of sensing matrices A at the optimal
order of m proportional to k. However, these sufficient conditions are extremely pessimistic with
associated phase transitions well below observed performance [30, 31]. These algorithms employ
projections via hard thresholding which sets selected coefficients to zero while leaving the remaining
coefficients unchanged. We refer to this class of algorithms broadly as hard thresholding algorithms.
Unfortunately there are no precise average case characterizations for when (1) is solved by hard
thresholding algorithms, with the technical difficulty being that the hard thresholding projections
are not Lipshitz continuous [32].
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1.1. Relationship to Prior Work

This paper provides an empirical average case analysis of the hard thresholding algorithms via
large-scale testing of problems with realistic, application sized problems. The literature already has
several examples of empirical testing of algorithms for compressed sensing, notably [33, 34, 23]. In
[33] Donoho and Maleki studied optimal tuning parameters for various algorithms, including hard
thresholding algorithms. In [34], Sturm studied 15 algorithms with 7 vector distributions focusing
entirely on locations of the phase transition for Gaussian matrices. In [23], Monajemi et. al studied
the behavior of linear programing (2) recovery probability for numerous deterministic matrices. The
information provided in the previous work, such as the tuning parameters for IHT and CSMPSP
from [33] have been incorporated into our work. This work is distinct from these predecessors in
three main ways.

First, each of those empirical analyses focus on small problem dimensions of n = 800, n = 400,
and n ≈ 1000, in [33], [34], and [23] respectively. This present empirical analysis is based on
problems with ambient dimension frequently set at n = 218 and n = 220. Empirical studies with
more realistic, application sized problems offer better insight into the large-scale behavior and
should bolster practitioners’ confidence in the results. The ability to test large problem sizes is
particularly important in evaluating the behavior of algorithms in the extreme undersampling regime
of m� n. When n is small as in previous empirical studies, significant undersampling quickly
forces the sparsity level toward zero resulting in poor resolution of k/m. As compressed sensing
is primarily concerned with extreme undersampling, this is the most critical region for empirical
testing.

Second, none of the previous works consider the very competitive greedy algorithms NIHT or
HTP. While [23] is focused exclusively on `1 minimization, the other two projects examined greedy
algorithms, including IHT, CoSaMP, and Subspace Pursuit. Whereas, [33] identified a tuned, fixed
step size for IHT, Blumensath and Davies [27] updated IHT to NIHT by incorporating the optimal
step size in the current supporting subspace, leading to considerable improvement in both recovery
capability and time. Foucart [28] altered IHT adopting the projection ideas from CoSaMP and
Subspace Pursuit and combining them with the iterative update step from IHT. These two greedy
algorithms are highly competitive with other greedy algorithms and their practical behavior is
extensively studied in this work.

Finally, the most significant delineating contribution of this paper is the focus on other behavior
characteristics of the algorithms. While [33, 34, 23] are almost entirely focused on the location of the
empirical, average case, recovery phase transition, this paper is focused on providing information
about how an algorithm performs in relationship to the others, specifically in regions where more
than one algorithm is successful. The location of the phase transition is a critical element in
this analysis as it identifies the region in which an algorithm reliably recovers the measured
vector. However, which algorithm should be selected when more than one algorithm is able to
reliably recover the measured vector? This work not only provides empirical phase transitions
for large, realistic sized problems, it also provides an algorithm selection map for each problem
class, indicating which algorithm is able to reliably recover the measured vector in the least time.
Information about the mean and variance for certain performance characteristics is also presented,
including time for recovery, ratio of time to fastest algorithm, iterations, convergence rate, and
fraction of support set recovered.

The increased scope of testing here is made possible by our development of a software package
designed for such large scale, rapid testing using graphics processing units (GPUs). The software,
GPU Accelerated Greedy Algorithms for Compressed Sensing (GAGA) [35, 36], includes a
full testing suite which generates a problem on the GPU, solves the problem with one of five
hard thresholding algorithms (also referred to as greedy algorithms), and returns performance
characteristics to a text file. The software is also capable of solving a problem directly rather than
generating a random problem and is therefore useful for applications; a detailed description of the
software including timings and acceleration ratios is presented in [35]. The software is available for
download at [36].
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1.2. Preliminaries

Our empirical investigation of the hard thresholding algorithms for compressed sensing considers
the ability to recover the underlying signal, recovery time, and other performance characteristics
of NIHT, HTP, and CSMPSP (a hybrid algorithm akin to Subspace Pursuit and CoSaMP). A†S
is the pseudo inverse of AS where AS is the m× |S| submatrix consisting of the columns of
A indexed by S. In our implementation, the projection A†Sy is performed via the conjugate
gradient method restricted to the subspace defined by S. Thus, if z = A†Sy, then z = zS is a vector
supported on the index set S. The pseudo code presented for the algorithms include the subroutines
DetectSupport(z), returning the k largest magnitude entries in z, and Threshold(z, S), the
hard thresholding operator that leaves the values in zS unchanged and sets all other values of z to
zero. Details of the implementations of the algorithms and subroutines in GAGA are described in
[35]. For conciseness the algorithm pseudo code omits the initialization and stopping criteria, which
are stated in Alg. 6.

Algorithm 1 NIHT (Normalized Iterative Hard Thresholding [27])
Iteration: During iteration l, do

1: ωl =
‖A∗

Tl−1
rl−1‖22

‖ATl−1
A∗
Tl−1

rl−1‖22
(optimal step size in the k-subspace Tl−1)

2: xl = xl−1 + ωlA
∗rl−1 (steepest descent step)

3: Tl = DetectSupport(xl) (proxy to the support set)
4: xl = Threshold(xl, Tl) (restriction to proxy support set Tl)
5: rl = y −Axl (update the residual)

Algorithm 2 HTP (Hard Thresholding Pursuit [28])
Iteration: During iteration l, do

1: ωl =
‖A∗

Tl−1
rl−1‖22

‖ATl−1
A∗
Tl−1

rl−1‖22
(optimal step size in the k-subspace Tl−1)

2: xl = xl−1 + ωlA
∗rl−1 (steepest descent step)

3: Tl = DetectSupport(xl) (proxy to the support set)
4: xl = A†Tly (projection onto the k-subspace Tl)
5: rl = y −Axl (update the residual)

Algorithm 3 CSMPSP (CoSaMP [24], Subspace Pursuit [25])
Iteration: During iteration l, do

1: Sl = DetectSupport(A∗rl−1) (k columns most correlated with residual)
2: Λl = Tl−1 ∪ Sl (form a larger proxy for the support set)
3: xl = A†Λly (projection onto the 2k-subspace Λl)
4: Tl = DetectSupport(xl) (proxy to the support set)
5: xl = Threshold(xl, Tl) (restriction to proxy support set Tl)
6: rl = y −Axl (update the residual)

Problem Class For each algorithm we conduct tests for random matrices, drawn from different
ensembles, used to measure sparse vectors whose nonzeros are similarly drawn from a variety of
distributions. We refer to the combination of a matrix ensemble and sparse vector ensemble as a
problem class and denote it by (Mat, vec). Each algorithm is evaluated for a specific problem class
by repeatedly testing different problem instances at a variety of problem sizes.
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Problem Instance Let A and x be drawn from a specific problem class (Mat, vec) at size
(k,m, n) where the matrix A is of size m× n and the vector x has k nonzeros. We refer to a
problem instance without noise as recovery of x from the pair (A, y) where y = Ax, and a problem
instance with noise as recovery of a k sparse vector from the pair (A, y) where y = Ax+ ewith e is a
normally distributed additive noise vector. When a problem class is tested for problem instances that
have additive noise we denote the problem class by (Mat, vecε) with e drawn from N (0, ε‖Ax‖2).
The following paragraphs detail the matrix and sparse vector ensembles investigated in this work.

Matrix ensemble The measurement matrices are drawn from one of three matrix ensembles
denoted by N (normal/Gaussian), Sp (sparse), and DCT (discrete cosine transform):

• N : Gaussian matrix normalized to have expected unit Euclidean length columns, i.e. entries
drawn i.i.d. from N (0,m−1).

• Sp: Sparse matrix with p nonzeros per column with support set drawn uniformly at random
and nonzero values drawn uniformly at random from plus or minus p−1/2.

• DCT : Random subsampled rows of the discrete cosine transform matrix.

The sparse matrix ensemble Sp is tested primarily for p = 4 and p = 7, with S7 having nearly as
high a recovery phase transition as for larger values of p while retaining a lower computational
cost. The results for S4 are shown to illustrate that such sparse matrices have substantially lower
recovery phase transitions; whereas App. F shows limited increase in the phase transition region as
p is increased from 7 to 13.

Sparse vector ensembles Each vector has a support set chosen uniformly at random and the
nonzero entries drawn i.i.d. from one of the following distributions denoted by B (binary), U
(uniform), and N (normal):

• B: Nonzeros drawn from plus and minus one, {−1, 1}, with equal probability;
• U : Nonzeros drawn uniformly from the unit interval, U(0, 1);
• N : Nonzeros drawn from the standard normal distribution, N (0, 1).

The main findings of our empirical tests are summarized in the following section, with the
remainder of the manuscript presenting a distillation of the data generated. These findings by no
means exhaust the information contained in the data, nor do they answer all questions a practitioner
might have. More quantitative variants of these claims are found in the sections that present the
supporting evidence. The software used to conduct these tests and process the data are available at
[36], written with the aim that interested parties can easily generate different data and easily process
it in order to address other questions.

1.3. Main Findings

The following six claims summarize the more detailed observations in Sections 3 and 4. While
Claims 1 and 4 are minor extensions and reinforcement for similar claims from previous work, the
remaining claims offer new insight in the behavior of the algorithms across a wide range of problem
instances.

Claim 1 (Recovery regions: sparse binary vectors without noise)
For problem classes (Mat,B) with Mat ∈ {N ,S4,S7, DCT} and problem instances drawn
without noise, the recovery phase transitions for NIHT, HTP, and CSMPSP increasingly approach
one another for m� n, with the exception of CSMPSP for (DCT,B) where a substantially lower
phase transition is observed. For ratios of m/n approaching one CSMPSP has a phase transition
that is substantially higher for problem classes (N , B) and (S7, B) and a modestly higher phase
transition for (DCT,B); NIHT and HTP are observed to have recovery regions similar to each
other.

Claim 2 (Algorithm selection: sparse binary vectors without noise)
NIHT is able to recover problems from the class (DCT,B) near the observed recovery phase
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transition in less time than can HTP or CSMPSP. NIHT is typically able to recover problems from
the class (N , B) for m� n in less time than HTP and CSMPSP; however, for m/n approaching
one CSMPSP is preferable due to a substantially higher phase transition. CSMPSP is able to recover
problems from the class (Sp, B) for p = 4 and p = 7 in less time than can NIHT and HTP.

Claim 3 (Algorithm variability: binary vectors without noise)
For each of NIHT, HTP, and CSMPSP, at any (k,m, n) with m and n fixed, once k/m
decreases below the recovery phase transition curve, the following algorithm properties are highly
concentrated about their mean: the fraction of true positives of the support set recovered, number of
iterations to recovery, and asymptotic convergence rate.

Claim 4 (Recovery regions: alternate vector ensembles)
For NIHT, HTP, and CSMPSP with Mat ∈ {N ,S4,S7, DCT}, the recovery phase transition for
(Mat,B) is below those of problem classes (Mat, U) and (Mat,N). This behavior extends to
problem instances with noise, where the phase transitions for problem classes (Mat, Uε) and
(Mat,Nε) are substantially higher than the phase transitions for the problem class (Mat,Bε) for
m < n/2.

Claim 5 (Algorithm recovery: effects of moderate noise (ε = 1/10))
For m� n, the recovery phase transitions for algorithms NIHT, HTP, and CSMPSP decrease
insubstantially for moderate levels of noise, ε, across all problem classes (Mat, vec) with Mat ∈
{N ,S4,S7, DCT} and vec ∈ {B,U,N}. The phase transition curves for problem classes (Mat,Bε)
and (Mat,B) are similar throughout the phase space. For vec ∈ {U,N}, the gap between the phase
transition curves for (Mat, vecε) and (Mat, vec) grows significantly as m/n approaches one.

Claim 6 (Algorithm selection: all vector ensembles with moderate noise (ε = 1/10))
Across all problem classes contaminated by moderate noise (ε = 1/10), (Mat, vecε) with Mat ∈
{N ,S4,S7, DCT} and vec ∈ {B,U,N}, NIHT recovers vectors in less time than HTP or CSMPSP
throughout the overwhelming majority of the phase space. Moreover, when NIHT is not the fastest
algorithm and m < n/2, NIHT never requires more than twice the time of HTP or CSMPSP.

Claims 1–6 are informed by the totality of the data generated by the testing including the formal
observations, figures, and tables presented in Secs. 3–4, and Apps. A–F.

1.4. Outline

The manuscript is organized as follows. Sec. 2 describes the experimental setup including: algorithm
initialization, termination conditions, data fitting techniques, as well as the size and number of
problem classes tested. Sec. 3 presents the data for the problem class (Mat,B) for Mat ∈
{N ,Sp, DCT} for p = 4 and p = 7, with recovery phase transitions presented, including: regions of
high probability of recovery, average time for recovery, algorithm selection maps, and the variance
of these and other performance properties of NIHT, HTP, and CSMPSP. Sec. 4 presents a similar
analysis as in Sec. 3, extended to show how the algorithm properties change with the introduction of
moderate values of noise (ε = 1/10), Sec. 4.1, and for vector ensembles U and N , Sec. 4.2. Sec. 5
outlines future extensions.

Only a small portion of the algorithm performance data calculated as described in Sec. 2 is
presented in the main body of the manuscript. Extensive appendices present additional aspects of
the data, further bolstering the claims and observations from the main body of the manuscript.
App. A presents recovery phase transition curves for (Mat,B) with Mat ∈ {N ,Sp, DCT} for
p = 4 and p = 7 at smaller problem sizes than presented in Sec. 3; this data shows the convergence
of the recovery phase transition curves as n increases. App. B presents algorithm selection maps
for (Mat,B) with Mat ∈ {N ,S7, DCT} for smaller values of n than those presented in Sec. 3, as
well as algorithm selection maps and relative timing information for (S4, B). These results show
that the algorithm selection maps presented in Sec. 3 are consistent across problem sizes and for
(Sp, B) for smaller values of p. App. C presents the recovery phase transitions for (Mat, vec) with
Mat ∈ {N ,Sp, DCT} with p = 4 and p = 7 and vec ∈ {B,U,N,Bε, Uε, Nε} with ε = 1/10 where
each plot considers a single problem class and each of the algorithms NIHT, HTP, and CSMPSP.
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App. D presents the ratio of the minimum average time over the average time for each of the
algorithms NIHT, HTP, and CSMPSP for problem classes (Mat, vec) for Mat ∈ {N ,S7, DCT}
and vec ∈ {Uε, Nε} for ε = 1/10. The plots in App. D can be interpreted as algorithm selection maps
when the measurements have moderate levels of additive noise. App. E presents recovery phase
transitions with each plot considering a single algorithm and matrix ensemble but three values of
vec ∈ {Bε, Uε, Nε}; plots are shown for each combination of algorithms NIHT, HTP, and CSMPSP,
matrix ensemblesMat ∈ {N ,S4, DCT} and for both ε = 0 and ε = 1/10. App. F presents recovery
phase transitions for (Sp, vec) for p = 4, 7, and 13, for each of vec ∈ {B,U,N,Bε, Uε, Nε} with
ε = 1/10. These plots show that the gap between the recovery phase transition curves for p = 13
and p = 7 is much smaller than the gap between p = 7 and p = 4; this and other data, informed the
focus in the main body of the manuscript on p = 7 for Mat = Sp.

2. EXPERIMENTAL SETUP

This manuscript describes the average case behavior of five hard thresholding algorithms with
an emphasis on the following three algorithms: NIHT, HTP, and CSMPSP whose pseudo code
are stated in Alg. 1-3. For completeness, where appropriate, we include in our comparison the
behavior of two even simpler, though often less efficient, algorithms: IHT [26], Alg. 4, which is
the precursor to NIHT differing by the use of a fixed step size, and Hard Thresholding [37], Alg.5,
which corresponds to one step of HTP initialized with a starting vector of all zeros.

Algorithm 4 IHT (Iterative Hard Thresholding [26])
Iteration: During iteration l, do

1: xl = xl−1 + ωA∗rl−1 (steepest descent step with fixed step size)
2: Tl = DetectSupport(xl) (proxy to the support set)
3: xl = Threshold(xl, Tl) (restriction to proxy support set Tl)
4: rl = y −Axl (update the residual)

Algorithm 5 Hard Thresholding
Approximation:

1: x̂ = A†T0
y (projection onto the T0 subspace)

Algorithm 6 Initialization Procedure
Input: A, y, k
Output: A k-sparse approximation x̂ of the target signal x

Initialization and Initial Support Detection
1: x0 = A∗y (initial approximation)
2: T0 = DetectSupport(x0) (proxy to the support set)
3: x0 = Threshold(x0, T0) (restriction to proxy support set T0)
4: r0 = y −Ax0 (initialize residual)

Each of the five hard thresholding algorithms discussed take as their arguments the measurements,
y, the matrix by which the measurements were acquired, A, and the sparsity level k. With the
exception of Alg. 5, each algorithm is initialized using Alg. 6 and continues iterating until one of
the following stopping criteria are met:

• the residual is small: ‖rl‖2 < .001 · mn ;
• a maximum number of iterations has been met: 5000 for Alg. 1 and Alg. 4 and a maximum

number of 300 iterations for Alg. 2 and Alg. 3;
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• the residual has failed to change significantly in 16 iterations:

max
j=1,...,15

∣∣∣‖rl−j+1‖2 − ‖rl−j‖2
∣∣∣ ≤ 10−6;

• after many iterations, the convergence rate is close to one: let c = 700 for Alg. 1 and Alg. 4
and c = 125 for Alg. 2 and Alg. 3; the algorithm terminates

if l > c and
(
‖rl−15‖22
‖rl‖22

) 1
15

> 0.999.

When any one of the stopping criteria are met at iteration l, the algorithm terminates and returns the
k sparse approximation xl which we denote by x̂.

There are two distinct analysis frameworks used to interpret the data generated from the empirical
testing. In Sec. 3, the analysis focuses on extensive testing of the problem classes (Mat,B) for
Mat ∈ {N ,Sp, DCT}. As stated in Claim 4 and in previous studies [33, 34], the random vector
ensemble vec = B has the lowest recovery phase transition for hard thresholding algorithms. In this
noise free setting, we perform extensive testing for many values of n in order to provide insight into
dependence on the problem size n. This testing is detailed in Sec. 2.1. Sec. 4 provides an analysis
of testing conducted on all problem classes (Mat, vec) and (Mat, vecε); here a single value of n is
tested per problem class and there is a relaxation in the definition of successful recovery as described
in Sec. 2.2. Details of all tests and the distinctions between the testing conducted in Secs. 3 and 4
are outlined in the following subsections.

2.1. Testing and analysis of problem class (Mat,B) without noise

The data supporting the three main findings for the algorithm behavior on problem class (Mat,B)
without noise, Claims 1–3, are generated from problem instances when the problem sizes (k,m, n)
tested are selected to best explore each of the properties under consideration. Determining the
recovery phase transition behavior underlying Claim 1 is best resolved by focusing the tests near
the phase transition. Determining the average time for each algorithm in the region where they are
able to recover the measured sparse vector, which informs Claim 2, requires testing throughout
their recovery region. The aforementioned tests can provide a wealth of other information about the
tested algorithms throughout their recovery regions, such as the mean and standard deviation of:
the fraction of true positives of the recovered vector, the number of iterations, and the asymptotic
convergence rates. To more concisely convey the data establishing claim 3 we conduct greater
numbers of tests for a few selective values of (k,m, n) in the union of the algorithms’ recovery
region.

Determination of average case phase transitions for various problem classes The following
tests are conducted to identify the average case recovery phase transition for various (Mat,B)
problem classes. The measured vector x from a randomly drawn problem instance from the problem
class is considered to be successfully recovered if the algorithm returns the approximation x̂ which
differs from x by no more than 10−3 in any component:

‖x− x̂‖∞ < .001. (4)

Tests are conducted for the values of n that increase by a factor of 4 from: 210 to 220 for
Mat = DCT , from 210 to 218 for Mat = Sp with p = 4 and 7, and from 210 to 214 for Mat = N .
For each value of n, tests were conducted for 30 values of m selected as m = dδ · ne for each

δ ∈ {.001, .002, .004, .006, .008, .01, .02, .04, .06, .08, 0.1, . . . , 0.99} (5)

with 18 additional, linearly spaced values of δ from 0.1 to 0.99. For each m,n pair, problem
instances are tested for values of k selected as follows. First the bisection method is used, starting
with k = 1 and k = m− 1, to determine values kmin and kmax such that the algorithm is observed to
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have successfully recovered at least nine out of ten problem instances for those values of k < kmin
tested during the bisection method, and to have successfully recovered at most one out of ten
problem instances for those values of k > kmax tested during the bisection method. The interval
[kmin, kmax] is an estimate for the recovery phase transition region, which is then sampled by testing
ten problem instances for each of 50 independent values of k uniformly spaced in [kmin, kmax], or
if the interval width is less than 50, then ten problem instances are tested for each value of k in the
interval [kmin, kmax].

The above experimental setup includes testing more than 15,000 problem instances for each
algorithm, each problem class, and each value of n. To present this data as concisely as possible, for
each m,n pair, we compute a logistic regression of the data

π̂(k/m) =
1

1 + exp(−b0(1− b1k/m))
(6)

where the fit parameters b0 and b1 are calculated to minimize∑
k

∣∣∣∣π̂(k/m)− #success(k,m, n)

#trials(k,m, n)

∣∣∣∣ (7)

Fig. 1 displays the curve ρ = ρalg(Mat,B)(δ) such that π̂(ρ) = 1/2 for NIHT, HTP, and CSMPSP with
Mat ∈ {N ,Sp, DCT} and n = 220 forMat = DCT , n = 218 forMat = Sp with p = 4 and p = 7,
and n = 214 forMat = N . Figs. 16-19 display the logistic regression phase transitions for the other
values of n tested as well as the width of the transition regions given by ρ0.1 − ρ0.9 where π̂(ρc) = c.
Unless otherwise stated, all phase transition curves presented are for the 50% recovery level curve
defined by π̂(k/m) = 1/2.

Determination of algorithm timing and other behavior in recovery region The behavior of the
hard thresholding algorithms is explored over the entire (k,m, n) region for the same algorithms,
problem classes, and m,n pairs as described for the phase transition evaluation. However, as
opposed to the previous focus of k near the phase transition, for each (k,m, n) triple, ten problem
instances are tested with k = djm/50e beginning with j = 1 and increasing until the algorithm fails
to successfully recover the measured k sparse vector in each of the ten problem instances at that
value of (k,m, n). The algorithm run time data generated from these tests are used to determine an
algorithm selection map where for each (k,m, n) tested we indicate the algorithm which is able to
reliably recover the measured sparse vectors with the least run time, see Fig. 2. The data generated
includes: relative errors in multiple norms, average time per iteration, average total time, number of
iterations, average convergence rate, and true/false support set discovery rates.

The focus of this manuscript is on providing practical information about which algorithm is able
to reliably recover the measured sparse vector in the least amount of time, and to present this
data throughout the (k,m, n) parameter space. The average recovery time is presented for each
n using the axis of phase transition diagrams m/n vs k/m. Fig. 2 presents algorithm selection
maps for (Mat,B) for Mat = DCT with n = 220, Mat = N with n = 214, and Mat = S7 with
n = 218 respectively, where the algorithm with the least average recovery time is indicated for each
(k,m, n), as well as a plot of the absolute times for the fastest algorithm; Figs. 3, 4, and 5 present
accompanying ratios of the average recover time for each algorithm over the least average time.
Figures 20, 21, and 24 present algorithm selection maps with smaller values of n for the same
problem classes and algorithms.

Variance of algorithm behavior The data generated from the testing described in the prior
paragraph can be used to display numerous properties of an algorithm’s behavior. For conciseness
we limit our display of the non-timing data for a few representative problem sizes (k,m, n).
For each problem class (Mat,B) with Mat ∈ (N ,S7, DCT ) we conduct tests for NIHT, HTP.
and CSMPSP with n selected as 212 for Mat = N , n = 216 for Mat = S7, and n = 218 for
Mat = DCT . In each case five values of m are selected so that m/n is the value of (5) that is
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10 J. D. BLANCHARD AND J. TANNER

nearest to {1/100, 1/20, 1/10, 3/10, 3/5}. For each m,n pair, approximately one thousand problem
instances were tested for each of three values of k selected so that k = c · ρ?(Mat,B)(m/n) for
c = {1/2, 3/4, 9/10} where ρ?(Mat,B)(m/n) is the maximum of the 50% level curves of the logistic
regression fit of the recovery probability from the three algorithm’s previously generated data. For
each of NIHT, HTP, and CSMPSP the following data is presented in Tabs. I, II, and III forMat = N ,
Mat = DCT , and Mat = S7 respectively: #success, #trials, as well as the average and standard
deviation of the fraction of the true support set contained in the support set of the recovered vector,
the recovery time, number of iterations, and convergence rate.

2.2. Testing and analysis of problem classes both with and without noise

While the discussion in Sec. 2.1 and the data presented in Sec. 3 focus on the binary vector ensemble
B at many values of n, the data generated for Sec. 4 considers the problem classes (Mat, vec) for
vec ∈ {B,U,N,Bε, Uε, Nε} for a single value of n per problem class. For Mat ∈ {S4, S7, DCT}
we fix n = 217 and for Mat = N we fix n = 213. While the analysis remains the same as described
in the Sec. 2.1, the main change is an alternate definition of successful recovery. For vec ∈ {U,N},
there is a positive probability nonzero entries of the vector x will take values below the success
criteria defined by (4). Similarly for problem classes (Mat, vecε), even when the support set of
the vector x is known a priori the noise will introduce errors proportional to the noise level ε.
Therefore, the measured vector x from a randomly drawn problem instance from the problem
classes (Mat, vec) with vec ∈ {B,U,N,Bε, Uε, Nε} is considered to be successfully recovered if
the relative `2 error is no greater than 10−3 plus a constant multiple of the noise level ε:

‖x− x̂‖2
‖x‖2

< .001 + 2ε, (8)

where 2ε was observed to most accurately identify correct support set identification for (Mat,B).
Notice that this analysis uses the relative `2 norm even in the noise free case where ε = 0. All data
displayed in Sec. 4 utilize (8). When comparing figures and data from Secs. 3 and 4 it is clear
that defining success via (4) or (8) results in very similar phase transition curves ρalg(Mat,B)(m/n).
It is important to note that this difference in the definition of success has no impact on algorithms
during the recovery process; determining success is solely an aspect of the analysis and display of
the output from the algorithms.

For ease of comparison, a second change to the presentation of results in Sec. 4 is the
determination of problem instances (k,m, n) for the tabular data detailing the variance of the
algorithms; the dimensions of the problem size, (k,m, n), are selected to match those in Tabs. I–
III. In this way, one can directly compare the impact of noise on the algorithms for a fixed set
of problems. The only change to the information in the table is again the definition of successful
recovery where (8) is used in Tabs. IV–VI while (4) is used in Tabs. I–III.

3. ALGORITHM PERFORMANCE FOR PROBLEM CLASS (Mat,B)

This section presents and analyzes the main features of the data from the testing of problem classes
(Mat,B) for Mat ∈ {N ,S7, DCT} and the five hard thresholding algorithms Thresholding, IHT,
NIHT, HTP, and CSMPSP. Focus on the sparse signed vector ensemble B is due to both it being
the vector ensemble with the lowest recovery phase transition, see [33, 34] and Claim 4, and due
to the ease by which one can certify identification of the support set. The majority of the results
shown are given as figures in order to provide as concise as possible a presentation of the large
data set collected. The plots all have the undersampling ratio m/n as the horizontal axis and the
oversampling ratio k/m as the vertical axis; this is consistent with earlier presentation of similar
compressed sensing studies [38, 30, 22, 33, 34] and with theoretical sampling theorems [39].
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Figure 1. 50% recovery probability logistic regression curves for vec = B and algorithms NIHT, HTP,
CSMPSP, and Threshold: (a) Mat = DCT with n = 220, (b) Mat = N with n = 214, (c) Mat = S4 with

n = 218, and (d) Mat = S7 with n = 218.

3.1. Regions of high probability of recovery for (Mat,B)

Rather than presenting the success probability directly for relatively few values of (k,m, n), testing
is conducted for 30 values of δ in (5), and for each m,n pair, ten tests are performed for each of
approximately 50 values of k across the success phase transition region. The diversity of the values
of (k,m, n) tested give a broad sampling of the parameter space, but the resulting probability has
less resolution for each (k,m, n) tested resulting in a noisy appearance if displayed directly. For
each m,n pair the success probability is fit using logistic regression (6) and level curves of the
logit fit are shown. Fig. 1 presents the 50% recovery level curves for each of the problem classes
(Mat,B) at the largest value of n tested; curves are shown for algorithms Thresholding, NIHT,
HTP, and CSMPSP. The recovery curves for IHT are observed to be at or below those for NIHT in
all instances and are not displayed in Fig. 1. Figs. 16-19 present the 50% logistic regression fit for
the smaller values of n tested, as well as the gap between the 10% and 90% logistic regression.

Thresholding is observed to have a substantially lower recovery phase transition than do the
iterative hard thresholding algorithms; this feature is exacerbated as n is increased. In fact, for any
fixed δ ∈ (0, 1), the phase transition for hard thresholding converges pointwise to zero at the rate
1/ log(n) [37]. In contrast the phase transitions for IHT, NIHT, HTP, and CSMPSP concentrate with
increasing n to values near those shown in Fig. 1; see Figs. 16-19.
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12 J. D. BLANCHARD AND J. TANNER

Observation 3.1.1
For the problem class (DCT,B) with n = 218 and 220, NIHT and HTP have recovery phase
transitions within 0.01 of each other for m/n < 1/4 and approach one another as m/n decreases to
zero; whereas CSMPSP is observed to have a substantially lower phase transition as m/n decreases
below 1/2. For m/n > 1/2 the phase transitions of NIHT remains slightly above that of HTP, with
CSMPSP comparable near m/n = 1/2 and increasing to have the highest phase transition as m/n
approaches one. (See Fig. 1.)

Observation 3.1.2
For the problem classes (N , B) and (Sp, B) for p = 4 and p = 7, CSMPSP has a recovery phase
transition that is above NIHT, whose phase transition is above HTP. Within each problem class, as
m/n approaches zero the phase transitions of these three algorithms approach one another. As m/n
approaches one the phase transitions for CSMPSP becomes more than twice those of NIHT and
HTP. (See Fig. 1.)

Similar recovery phase transition studies to those shown in Fig. 1 were conducted in [33, 34, 23].
Quantifying and comparing the recovery phase transition curves for algorithms is of primary
importance for their application as it indicates the problem sizes (k,m, n) where the algorithm
will return the measured vector. Obs. 3.1.1 and 3.1.2 highlight instances where the phase transitions
are substantially different, indicating problem sizes where only one algorithm is able to reliably
recovery the measured vector. However, these observations also highlight problem sizes in which
multiple algorithms are able to recover the measured sparse vector, in particular, asm/n approaches
zero, the region of greatest practical interest for compressed sensing as this region corresponds to
the most substantial undersampling. In regions where more than one algorithm is able to reliably
recover the measured vector, further information is needed in order to determine which algorithm to
select. To provide this additional information, this manuscript focuses on the average recovery time
of the algorithms.

3.2. Average time for recovery and algorithm selection maps

Figs. 2 and 20-24 present timing information for IHT, NIHT, HTP, and CSMPSP for problem
classes (Mat,B) with Mat ∈ {N ,Sp, DCT} for p = 4 and p = 7. The average recovery time
for each algorithm is recorded for each (k,m, n) where an algorithm’s average error satisfies
‖x̂− x‖∞ < 1/100; for each such (k,m, n) the minimum of these average times is displayed,
see Figs. 2 and 3-5. Accompanying each such minimum time plot is an algorithm selection map
which indicates the algorithm whose minimum recovery time is shown in the plot at a given
(k,m, n); consequently, the algorithm selection map indicates which algorithm is recommended at
that particular value of (k,m, n). Fig. 2 displays the algorithm selection maps for the largest value of
n tested for each of the problem classes (Mat,B) with Mat ∈ {N ,S7, DCT}; algorithm selection
maps for these problem classes and smaller values of n are displayed in Figs. 20-24, including also
(S4, B).

For problem classes (DCT,B), (N , B), and (S7, B), Figs. 3-5 respectively display the
accompanying ratio of the average recovery time for each algorithm divided by the minimum
recovery time. These plots highlight how much slower algorithms are that did not have the minimum
time, in some instances showing that multiple algorithms have very comparable execution times and
regions where some algorithms are substantially slower than the fastest algorithm.

Observation 3.2.1
For the problem class (DCT,B), NIHT is able to reliably successfully recover the measured vector
in less time than HTP and CSMPSP for approximately 1

2ρ
niht
(DCT,B)(δ) / k/m / ρniht(DCT,B)(δ) and

δ / 4/5. HTP has a smaller recovery time for lower values of values of k/m, and CSMPSP has an
even lower recovery time as m/n approaches one or k/m approaches zero. (See Fig. 2 Panel (a)
and Fig. 20.) Throughout the recovery region the algorithms have recovery times that are typically
within a multiple of five of each other, and often much closer. (See Fig. 3.)

Obs. 3.2.1 encourages the use of NIHT for the problem class (DCT,B), with the computational
time scaling approximately proportional to n. NIHT has its greatest recovery time at its phase
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Figure 2. Left panels: Algorithm selection maps. Right panels: Average time for the fastest algorithm. Panels
(a-b) (DCT,B) with n = 220, (c-d) (N , B) with n = 214, and (e-f) (S7, B) with n = 218.

transition, but even there NIHT is able to reliably recover the measured vector with n = 220 in,
on average, under 250ms.

Observation 3.2.2
For the problem class (N , B), the algorithms show a clear layering in k/m of minimum compute
time. CSMPSP has a substantially higher phase transition than the other algorithms, particularly
as m/n approaches one, with the algorithm selection map marking CSMPSP in that region. Once
entering the region where the other algorithms are also able to reliably recover the measured vector,
we observe NIHT or IHT to require the least time for moderate values of k/m, and HTP taking
the least time as k/m approaches zero. (See Fig. 2 Panel (c) and Fig. 21) In the region where IHT

Copyright c© J.D. Blanchard and J. Tanner. (0000)



14 J. D. BLANCHARD AND J. TANNER

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

Time (ms) of fastest algorithm for (DCT,B) with n = 220

δ=m/n

 

ρ=
k/

m

40

60

80

100

120

140

160

180

200

220

240

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

Time (ms) of NIHT / fastest algorithm for (DCT,B) with n = 220

δ=m/n

 

ρ=
k/

m

1

1.5

2

2.5

3

3.5

4

4.5

5

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

Time (ms) of HTP / fastest algorithm for (DCT,B) with n = 220

δ=m/n

 

ρ=
k/

m

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

Time (ms) of CSMPSP / fastest algorithm for (DCT,B) with n = 220

δ=m/n

 

ρ=
k/

m

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

(c) (d)

Figure 3. Panel (a), time for fastest algorithm for (DCT,B) with n = 220. Ratio of average time for NIHT,
HTP, and CSMPSP over the fastest algorithm in (b-d) respectively.
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Figure 4. Panel (a), time for fastest algorithm for (N , B) with n = 214. Ratio of average time for NIHT,
HTP, and CSMPSP over the fastest algorithm in (b-d) respectively.
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Figure 5. Panel (a), time for fastest algorithm for (S7, B) with n = 214. Ratio of average time for NIHT,
HTP, and CSMPSP over the fastest algorithm in (b-d) respectively.

is marked, NIHT typically requires about 40% more time due to calculating the step size, whereas
IHT is using the fixed step size µ = 0.65 advocated in [33]. HTP takes from about 3 times as long
down to approximately the same time as k/m decreases to zero. (See Fig. 2 Panel (d) and Fig. 4.)

Obs. 3.2.2 encourages the use of CSMPSP for the problem class (N , B) and the largest values of
k/m recoverable, most notably asm/n approaches one. Form/n / 1/2 the recovery time for NIHT
is either the least or within about 40% of the fastest; HTP and CSMPSP take modestly longer. For
m/n < 1/10 the absolute recovery time for problems of size n = 214 in less than 500ms in regions
where these algorithms are reliably able to recover the measured vector.

Observation 3.2.3
For the problem class (Sp, B) with p = 4 and p = 7 the algorithms show two recovery regions.
CSMPSP has a substantially higher phase transition than the other algorithms, particularly as m/n
approaches one. CSMPSP has the least recovery time, or within a small multiple, throughout its
recovery region. NIHT has a modestly smaller recovery time than CSMPSP in the majority of its
recovery region, with HTP having the least recovery time for the smallest value of k/m. (See Fig. 2
Panel (e)-(f) and Figs. 5, 22-24.)

Obs. 3.2.3 encourages the use of CSMPSP for the problem class (Sp, B) for p = 4 and p = 7;
with average recovery times for problems of size n = 218 in under 400ms. Increasing p from 4 to
7 causes a notable rise in the recovery region for NIHT, in which it has approximately the same
recovery time as CSMPSP for (k,m, n) modestly below the recovery phase transition of NIHT.

3.3. Variance of algorithm recovery behavior

Within each problem class (Mat,B) for Mat ∈ {N ,Sp, DCT}, both the region of recovery and
the average time for recovery of NIHT, HTP, and CSMPSP show little variability for (k,m, n)
fixed once n is large. The low variability is most readily apparent by testing the algorithms for
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m k Algorithm succ/test true pos fraction time (ms) iterations convergence rate

246

19
NIHT 892/892 1(± 0) 19.23(± 2) 14.27(± 2) 0.4699(± 0.03)
HTP 896/896 1(± 0) 30.22(± 8) 1.371(± 0.5) 0.02743(± 0.1)
CSMPSP 907/907 1(± 0) 29.59(± 5) 0.1213(± 0.3) 0.8793(± 0.3)

28
NIHT 890/900 0.9947(± 0.05) 31.38(± 5e+01) 24.38(± 3e+01) 0.5589(± 0.06)
HTP 898/913 0.992(± 0.06) 76.6(± 9e+01) 4.179(± 6) 0.1035(± 0.1)
CSMPSP 904/906 0.9991(± 0.02) 50.45(± 2e+01) 1.396(± 1) 0.04757(± 0.2)

34
NIHT 634/938 0.8481(± 0.2) 73.15(± 2e+02) 55.09(± 1e+02) 0.7403(± 0.2)
HTP 644/919 0.8597(± 0.2) 234.9(± 2e+02) 14.09(± 1e+01) 0.4621(± 0.4)
CSMPSP 808/945 0.927(± 0.2) 224.2(± 4e+02) 13.33(± 3e+01) 0.2533(± 0.3)

410

37
NIHT 909/909 1(± 0) 25.97(± 2) 16(± 1) 0.5099(± 0.02)
HTP 895/895 1(± 0) 46.89(± 1e+01) 1.706(± 0.5) 0.02567(± 0.01)
CSMPSP 884/884 1(± 0) 43.16(± 9) 0.3077(± 0.5) 0.6944(± 0.5)

56
NIHT 972/979 0.9968(± 0.04) 41.54(± 7) 26.48(± 4) 0.6177(± 0.04)
HTP 969/976 0.9971(± 0.03) 108.1(± 6e+01) 4.589(± 3) 0.143(± 0.1)
CSMPSP 973/974 0.9995(± 0.01) 73.1(± 4e+01) 2.476(± 2) 0.05187(± 0.05)

67
NIHT 639/1022 0.8419(± 0.2) 71.21(± 5e+01) 44.57(± 3e+01) 0.7928(± 0.2)
HTP 605/1017 0.8308(± 0.2) 383(± 3e+02) 17.76(± 1e+01) 0.5923(± 0.3)
CSMPSP 938/1022 0.9634(± 0.1) 308.1(± 6e+02) 14.26(± 3e+01) 0.233(± 0.2)

1178

153
NIHT 902/902 1(± 0) 68.01(± 3) 20.76(± 0.9) 0.6097(± 0.02)
HTP 896/896 1(± 0) 136.5(± 2e+01) 2.252(± 0.4) 0.05033(± 0.02)
CSMPSP 900/900 1(± 0) 131.3(± 9) 1.002(± 0.05) 0.03883(± 0.1)

230
NIHT 913/913 1(± 0) 124.4(± 1e+01) 38.6(± 4) 0.7276(± 0.01)
HTP 905/907 0.9993(± 0.01) 344.2(± 1e+02) 6.529(± 2) 0.2566(± 0.08)
CSMPSP 894/894 1(± 0) 194(± 2e+01) 2.851(± 0.7) 0.07642(± 0.03)

275
NIHT 305/930 0.7925(± 0.2) 222.9(± 5e+01) 68.8(± 1e+01) 0.9262(± 0.1)
HTP 150/911 0.7333(± 0.1) 1436(± 5e+02) 29.34(± 1e+01) 0.9197(± 0.2)
CSMPSP 892/902 0.9965(± 0.03) 383.7(± 6e+02) 6.91(± 1e+01) 0.209(± 0.1)

2521

477
NIHT 894/894 1(± 0) 177.4(± 5) 28.89(± 0.9) 0.7176(± 0.007)
HTP 894/894 1(± 0) 360.6(± 3e+01) 3.128(± 0.3) 0.09977(± 0.02)
CSMPSP 905/905 1(± 0) 304.2(± 8) 2.253(± 0.5) 0.0652(± 0.03)

716
NIHT 890/892 0.9995(± 0.01) 429.3(± 6e+01) 71.35(± 9) 0.8254(± 0.009)
HTP 886/926 0.9916(± 0.04) 1628(± 7e+02) 16.48(± 8) 0.532(± 0.1)
CSMPSP 883/883 1(± 0) 444.6(± 2e+01) 3.677(± 0.6) 0.1295(± 0.03)

859
NIHT 19/926 0.7727(± 0.05) 660(± 1e+02) 108.5(± 2e+01) 0.9973(± 0.02)
HTP 0/912 0.7158(± 0.03) 3099(± 8e+02) 32.03(± 8) 1(± 0)
CSMPSP 919/919 1(± 0) 762.6(± 2e+02) 8.607(± 2) 0.3564(± 0.06)

Table I. Performance of NIHT, HTP, and CSMPSP for (N , B) with n=4096

large numbers of problem instances for a given problem size (k,m, n). For problem classes (N , B),
(DCT,B), and (S7, B) Tabs. I, II, and III respectively present the average and standard deviation
of algorithm characteristics: support set true positive fraction, recovery time, number of iterations,
and convergence rates.

For Mat ∈ {S7, DCT}, five values of m are tested for a single value of n and for Mat = N
four values of m are tested with n = 212. For each m,n pair approximately one thousand problem
instances were tested for each of three values of k selected so that k = c · ρ?(Mat,B)(m/n) for
c = {1/2, 3/4, 9/10} where ρ?(Mat,B)(m/n) is the maximum of the 50% level curves of the logistic
regression fit of the recovery probability from the previously generated data. These three values of k
are selected as illustrative of the algorithm behavior in regions where at least one of the algorithms
is able to reliably recover the measured vector. In particular, for m,n fixed, variability decreases as
k decreases.

Observation 3.3.1
When successfully recovering a vector from the problem class (Mat,B) with Mat ∈
{N ,Sp, DCT}, the following performance characteristics for each algorithm exhibit small variation
about the mean: fraction of support set identified, time for recovery, iterations, and convergence rate.
(See Tabs. I–III.)

The low variance of the algorithm characteristics in regions where they recover the measured
vector allow for highly reliable conclusions to be drawn on the performance of the tested hard
thresholding algorithms in their regions of applicability. This consistent behavior is an important
aspect of the reliability of the claims and observations in this manuscript. Moreover, they inform a
practitioner that the algorithm can be expected to perform consistently for problem instances from
the same class and similar problem sizes.
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m k Algorithm succ/test true pos fraction time (ms) iterations convergence rate

2622

141
NIHT 1799/1799 1(± 0) 27.45(± 0.8) 13.03(± 0.4) 0.4216(± 0.009)
HTP 1808/1808 1(± 0) 52.2(± 1e+01) 1.314(± 0.5) 0.01257(± 0.01)
CSMPSP 1775/1787 1(± 0.0006) 52.99(± 4e+01) 0.1589(± 2) 0.996(± 0.06)

211
NIHT 1809/1809 1(± 0) 39.67(± 2) 18.97(± 0.8) 0.4942(± 0.006)
HTP 1820/1820 1(± 0) 99.35(± 8) 2.913(± 0.3) 0.05225(± 0.01)
CSMPSP 0/1812 0.8563(± 0.04) 695.3(± 8e+01) 23.23(± 3) 1(± 0)

253
NIHT 1812/1814 0.9996(± 0.01) 54.68(± 6) 26.48(± 3) 0.5377(± 0.02)
HTP 1802/1802 1(± 0) 158(± 3e+01) 4.967(± 1) 0.1415(± 0.04)
CSMPSP 0/1785 0.626(± 0.05) 740.6(± 8e+01) 24.86(± 3) 1(± 0)

15729

1239
NIHT 1942/1942 1(± 0) 33.87(± 0.8) 15.8(± 0.4) 0.4776(± 0.003)
HTP 1951/1951 1(± 0) 74.22(± 0.5) 2(± 0) 0.03196(± 0.0007)
CSMPSP 1954/1967 1(± 0.0003) 118.9(± 7e+01) 2.438(± 2) 0.5167(± 0.4)

1858
NIHT 1967/1967 1(± 0) 49.53(± 1) 23.6(± 0.5) 0.5857(± 0.004)
HTP 1966/1966 1(± 0) 109.5(± 8) 3.108(± 0.3) 0.06403(± 0.02)
CSMPSP 0/1633 0.8551(± 0.01) 572.8(± 3e+01) 18.22(± 1) 1(± 0)

2229
NIHT 1000/1000 1(± 0) 67.92(± 2) 32.4(± 1) 0.6358(± 0.003)
HTP 1000/1000 1(± 0) 198.3(± 1e+01) 6.137(± 0.5) 0.1984(± 0.02)
CSMPSP 0/998 0.6846(± 0.02) 644.2(± 1e+02) 20.65(± 4) 1(± 0)

26215

2401
NIHT 992/992 1(± 0) 36.4(± 0.8) 16.84(± 0.4) 0.4915(± 0.002)
HTP 994/994 1(± 0) 76.21(± 0.9) 2(± 0) 0.03263(± 0.006)
CSMPSP 998/998 1(± 0) 128.7(± 2e+01) 2.805(± 0.7) 0.1602(± 0.2)

3601
NIHT 987/987 1(± 0) 54.13(± 1) 25.4(± 0.5) 0.6164(± 0.003)
HTP 966/966 1(± 0) 129.8(± 1e+01) 3.757(± 0.4) 0.09367(± 0.02)
CSMPSP 0/975 0.8665(± 0.008) 601.3(± 2e+02) 18.81(± 5) 1(± 3e-07)

4321
NIHT 980/980 1(± 0) 75.85(± 2) 35.41(± 0.9) 0.6673(± 0.002)
HTP 978/978 1(± 0) 222.3(± 1e+01) 6.782(± 0.5) 0.2258(± 0.02)
CSMPSP 0/979 0.7107(± 0.01) 657.6(± 2e+02) 20.74(± 6) 1(± 1e-06)

75332

10451
NIHT 1000/1000 1(± 0) 46.54(± 0.8) 20.16(± 0.4) 0.5589(± 0.003)
HTP 999/999 1(± 0) 83.88(± 0.4) 2(± 0) 0.03451(± 0.0003)
CSMPSP 1000/1000 1(± 0) 101.7(± 1e+01) 1.68(± 0.5) 0.03724(± 0.03)

15676
NIHT 1000/1000 1(± 0) 72.99(± 0.6) 31.98(± 0.1) 0.6809(± 0.001)
HTP 1000/1000 1(± 0) 147.5(± 7) 3.938(± 0.2) 0.1036(± 0.01)
CSMPSP 8/1001 0.9291(± 0.007) 1407(± 1e+03) 42.75(± 4e+01) 0.9925(± 0.08)

18811
NIHT 1000/1000 1(± 0) 102.8(± 1) 44.71(± 0.6) 0.7325(± 0.001)
HTP 1000/1000 1(± 0) 255.3(± 9) 7.117(± 0.3) 0.2429(± 0.02)
CSMPSP 0/1000 0.8067(± 0.007) 2475(± 1e+03) 76.76(± 5e+01) 1(± 4e-07)

161288

37721
NIHT 991/991 1(± 0) 54.11(± 0.3) 21(± 0) 0.5707(± 0.0007)
HTP 998/998 1(± 0) 61.18(± 0.08) 1(± 0) 0.003893(± 3e-05)
CSMPSP 993/993 1(± 0) 73.4(± 1e+01) 0.2951(± 0.5) 0.711(± 0.4)

56581
NIHT 994/994 1(± 0) 86.26(± 0.6) 34.07(± 0.3) 0.7081(± 0.001)
HTP 999/999 1(± 0) 105.9(± 6) 2.056(± 0.2) 0.02632(± 0.008)
CSMPSP 997/997 1(± 0) 120.1(± 3) 2.22(± 0.4) 0.03593(± 0.01)

67897
NIHT 992/992 1(± 0) 122.8(± 1) 48.24(± 0.4) 0.7714(± 0.001)
HTP 998/998 1(± 0) 214.3(± 5) 5.007(± 0.1) 0.1505(± 0.008)
CSMPSP 994/994 1(± 0) 167.9(± 3e+01) 3.642(± 1) 0.08627(± 0.06)

Table II. Performance of NIHT, HTP, and CSMPSP for (DCT,B) with n=262144

4. ADDITIONAL PERFORMANCE ANALYSES

The superiority of NIHT, HTP, and CSMPSP when compared to IHT and Hard Thresholding,
for the problem class (Mat,B), is evident in Sec. 3. This section focuses exclusively on these
three algorithms and expands the problem classes from (Mat,B) to (Mat, vec) with vec ∈
{B,U,N,Bε, Uε, Nε}. Sec. 4.1 continues the focus on the vector ensemble B as in Sec. 3 while
considering the effects of noise by studying problem classes (Mat,B) and (Mat,Bε). Sec. 4.2
extends the analysis further to the vector ensembles {U,N,Uε, Nε}.

Recall from Sec. 2.2 that the analysis throughout this section considers a slightly relaxed
definition of success than was considered in the previous section. For Mat ∈ {Sp, DCT}, the tests
are conducted with n = 217 while n = 213 for Mat = N . While various other noise levels were
tested, this manuscript studies the moderate noise level ε = 0.1 as representative of the impact on
the algorithms of non adversarial, additive noise.

4.1. Performance Analysis in the Presence of Noise

In this section we study the effect of noise on the greedy algorithms by studying the problem classes
(Mat,B) and (Mat,Bε) for all matrix ensembles. As detailed in Sec. 2.2 the algorithms attempt to
find the vector x from the information y = Ax+ e where e is drawn fromN (0, ε‖Ax‖2). For vector
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m k Algorithm succ/test true pos fraction time (ms) iterations convergence rate

656

32
NIHT 283/376 0.8396(± 0.3) 266.9(± 4e+02) 203.5(± 3e+02) 0.5789(± 0.2)
HTP 327/327 1(± 0) 41.85(± 9) 2.043(± 0.6) 0.01716(± 0.01)
CSMPSP 367/367 1(± 0) 39.21(± 5) 1.27(± 0.5) 0.2327(± 0.2)

48
NIHT 1/329 0.2098(± 0.1) 978.4(± 5e+01) 748.9(± 4e+01) 0.9986(± 0.03)
HTP 335/337 0.9974(± 0.04) 101.3(± 3e+01) 5.733(± 2) 0.1383(± 0.09)
CSMPSP 353/353 1(± 0) 60.72(± 9) 2.541(± 0.7) 0.03072(± 0.02)

58
NIHT 0/481 0.1559(± 0.1) 983.6(± 1e+01) 751(± 0.05) 1(± 1e-05)
HTP 362/510 0.878(± 0.2) 257.6(± 1e+02) 15.05(± 9) 0.4933(± 0.3)
CSMPSP 441/485 0.9587(± 0.1) 192.8(± 4e+02) 10.9(± 2e+01) 0.1785(± 0.3)

3933

305
NIHT 896/902 0.9982(± 0.02) 95.77(± 8e+01) 73.22(± 6e+01) 0.5434(± 0.05)
HTP 892/892 1(± 0) 73.69(± 2e+01) 3.998(± 1) 0.0878(± 0.04)
CSMPSP 897/897 1(± 0) 57.81(± 9) 2.344(± 1) 0.0633(± 0.06)

458
NIHT 907/976 0.9744(± 0.09) 195.3(± 2e+02) 148.3(± 2e+02) 0.668(± 0.09)
HTP 962/962 1(± 0) 119.7(± 2e+01) 6.765(± 1) 0.2073(± 0.04)
CSMPSP 955/961 0.9942(± 0.07) 100.8(± 2e+01) 8.445(± 5) 0.2875(± 0.2)

549
NIHT 451/967 0.793(± 0.2) 247.4(± 2e+02) 184.6(± 2e+02) 0.8542(± 0.2)
HTP 513/999 0.8373(± 0.2) 415.8(± 2e+02) 25.02(± 9) 0.7193(± 0.3)
CSMPSP 975/975 1(± 0) 143.4(± 3e+01) 11.8(± 7) 0.3983(± 0.3)

6554

589
NIHT 896/896 1(± 0) 58.91(± 8) 45.65(± 6) 0.5786(± 0.02)
HTP 899/899 1(± 0) 65.68(± 1e+01) 3.514(± 0.7) 0.07501(± 0.03)
CSMPSP 901/901 1(± 0) 77.21(± 2e+01) 6.3(± 5) 0.2432(± 0.2)

883
NIHT 873/876 0.9992(± 0.01) 139.1(± 7e+01) 106.1(± 5e+01) 0.6812(± 0.02)
HTP 891/891 1(± 0) 125(± 1e+01) 7.103(± 0.9) 0.2297(± 0.04)
CSMPSP 895/895 1(± 0) 115(± 2e+01) 10.88(± 6) 0.4(± 0.3)

1060
NIHT 459/916 0.8333(± 0.2) 213.9(± 1e+02) 159.1(± 1e+02) 0.8623(± 0.1)
HTP 274/924 0.7826(± 0.1) 507(± 2e+02) 30.68(± 1e+01) 0.8448(± 0.2)
CSMPSP 874/878 0.9956(± 0.06) 158.3(± 3e+01) 14.23(± 7) 0.493(± 0.3)

18833

2460
NIHT 994/994 1(± 0) 73.32(± 8) 53.84(± 6) 0.6731(± 0.01)
HTP 996/996 1(± 0) 78.79(± 4) 4.012(± 0.3) 0.1145(± 0.02)
CSMPSP 990/993 0.9971(± 0.05) 69.91(± 7) 3.482(± 2) 0.1125(± 0.1)

3690
NIHT 991/997 0.994(± 0.08) 140.9(± 2e+01) 103.8(± 2e+01) 0.7722(± 0.02)
HTP 990/993 0.997(± 0.05) 181.2(± 2e+01) 9.972(± 0.9) 0.3624(± 0.04)
CSMPSP 994/994 1(± 0) 99.65(± 5) 6.038(± 1) 0.201(± 0.06)

4428
NIHT 154/1008 0.7779(± 0.1) 333.2(± 2e+02) 234.6(± 1e+02) 0.9714(± 0.07)
HTP 0/995 0.6872(± 0.02) 1190(± 7e+02) 69.57(± 4e+01) 1(± 0)
CSMPSP 1002/1004 1(± 1e-05) 153.7(± 1e+02) 8.323(± 5) 0.2805(± 0.06)

40322

7656
NIHT 996/996 1(± 0) 75.67(± 8) 53.56(± 6) 0.7551(± 0.01)
HTP 999/999 1(± 0) 103.5(± 3) 5.018(± 0.1) 0.1685(± 0.01)
CSMPSP 983/992 0.9912(± 0.09) 77.66(± 8) 2.293(± 0.6) 0.05613(± 0.09)

11484
NIHT 983/998 0.985(± 0.1) 240.6(± 5e+01) 153.3(± 3e+01) 0.8528(± 0.02)
HTP 988/988 1(± 0) 418.1(± 6e+01) 20.01(± 3) 0.5146(± 0.005)
CSMPSP 995/995 1(± 0) 136.8(± 4) 5.447(± 0.6) 0.186(± 0.03)

13780
NIHT 4/993 0.7933(± 0.03) 624(± 3e+02) 362.3(± 2e+02) 0.9996(± 0.007)
HTP 0/995 0.7181(± 0.01) 1882(± 9e+02) 88.44(± 4e+01) 1(± 0)
CSMPSP 990/990 1(± 0) 233.8(± 2e+01) 9.882(± 2) 0.36(± 0.06)

Table III. Performance of NIHT, HTP, and CSMPSP for (S7, B) with n=65536

ensemble B we set ε = 0 to eliminate additive noise and for vector ensemble Bε we set ε = 1/10.
In other words, the vector ensemble Bε consists of noisy, binary signals with a signal-to-noise ratio
equal to 10. From (8), we consider a problem instance a successful recovery when

‖x− x̂‖2
‖x‖2

≤ .001 + 2ε =

{
.001 for vec = B

.201 for vec = Bε
.

This section performs a parallel analysis to that in Sec. 3 by describing the effect of noise on the
region of successful recovery, the effect of noise on selecting an algorithm in the recovery region,
and the variance of descriptive performance characteristics for the algorithms.

Observation 4.1.1
With ε = 1/10, alg ∈ {NIHT,HTP,CSMPSP}, and Mat ∈ {N ,S7, DCT} the phase transition
curves ρalg(Mat,Bε)

(δ) and ρalg(Mat,B)(δ) are within 0.01 of each other for δ < 1/3. (See Figs. 6–7.)

Observation 4.1.1 describes what is commonly referred to as a “stability to noise” of the recovery
phase transition. Each of these algorithms has a theoretical sufficient condition based on the
restricted isometry property which guarantees the recovery error is bounded by a factor scaling with
the noise level ε. While these sufficient conditions are incredibly pessimistic [30, 31], Obs. 4.1.1
demonstrates all three algorithms’ recovery errors are proportional to the noise level ε in the majority
of problem instances within the noiseless recovery region.

Observation 4.1.2
For ε = 0.1 and Mat ∈ {N ,Sp, DCT}, the relationships between the phase transition curves for
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Figure 6. 50% recovery probability logistic regression curves for vec = Bε with ε = 0 and ε = 1/10 for
Mat = DCT with n = 217 in the left panels and forMat = N with n = 213 in the right panels. Algorithms

NIHT, HTP, and CSMPSP in Panels (a)-(b), (c)-(d), and (e)-(f) respectively.

NIHT, HTP, and CSMPSP for problem class (Mat,Bε) are consistent with Observations 3.1.1 and
3.1.2. (See Fig. 8.)

As the recovery phase transition curves for (Mat,Bε) track closely with the related recovery
phase transition from (Mat,B), the relative positioning of the moderate noise recovery phase
transitions remain the same as the noise free case. Observation 4.1.2 states that the regions of
successful recovery share the same inclusion relationships both with and without noise. This is
the type of recovery phase transition information has been reported in previous work. Here we
observe that though the relationships between the recovery regions change little with the inclusion
of moderate noise, the noise has a profound effect on the relationships of other performance
characteristics of these algorithms. Observation 4.1.3 states that, in terms of average recovery time,
the projection based methods HTP and CSMPSP are more significantly degraded than is the steepest
descent based method NIHT. The ratios of recovery times from Figs. 10–12 show ratios of HTP and
CSMPSP to NIHT regularly exceeding 10.
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Figure 7. 50% recovery probability logistic regression curves for n = 217 and vec = Bε with ε = 0 and
ε = 1/10 for Mat = S4 in the left panels and for Mat = S7 in the right panels. Algorithms NIHT, HTP, and

CSMPSP in Panels (a)-(b), (c)-(d), and (e)-(f) respectively.

Observation 4.1.3
For the problem class (Mat,Bε) with ε = 1/10 andMat ∈ {N ,Sp, DCT}, NIHT is able to reliably
successfully recover the measured vector in less time than HTP and CSMPSP for approximately
k/m / ρniht(Mat,Bε)

(δ) and essentially all of δ ∈ (0, 1). Moreover, NIHT is often 10 to 40 times faster
than HTP and CSMPSP, and for m/n < 1/2 the recovery time for NIHT is never more than 2
times that of the fastest algorithm. For ρniht(Mat,Bε)

(δ) / k/m / ρcsmpsp(Mat,Bε)
(δ), CSMPSP is the only

algorithm reliably able to successfully recover the measured vector and therefore has the lowest
recovery time. For the problem class (S7, Bε), as m/n approaches zero HTP recovers the vector in
the least time. (See Figs. 9–12.)

While the noise effects the magnitudes of the timings, the algorithms continue to exhibit
a predictable, repeated behavior for successful recovery for a specific problem instance
(Mat, vec) and (k,m, n). For example, considering the problem instance with (k,m, n) =
(10451, 75332, 262144), while the presence of noise in (DCT,Bε) causes increases in time for
recovery over (DCT,B) for NIHT, HTP, and CSMPSP by factors of 1.4, 6.5, and 5.9, respectively,
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Figure 8. 50% recovery probability logistic regression curves for vec = Bε with ε = 1/10 and algorithms
NIHT, HTP, and CSMPSP: (a) Mat = DCT with n = 217, (b) Mat = N with n = 213, (c) Mat = S4 with

n = 217, and (d) Mat = S7 with n = 217.

the recovery times have a variance less than 3.4% of the mean recovery time. Similar observations,
such as iterations for the same problem instance, can be drawn from Tables. IV–VI. This is
summarized in the following observation.

Observation 4.1.4
When successfully recovering a vector from the problem class (Mat,Bε) with ε = 1/10 and
Mat ∈ {N ,Sp, DCT}, the following performance characteristics for each algorithm exhibit small
variation about the mean: fraction of support set identified, time for recovery, iterations, and
convergence rate. (See Tabs. IV–VI.)

4.2. Performance Analysis on Other Vector Distributions

The empirical investigation now expands to include the sparse vector ensembles
{B,U,N,Bε, Uε, Nε}. For this set of vector ensembles, an analysis similar to that performed

Copyright c© J.D. Blanchard and J. Tanner. (0000)



22 J. D. BLANCHARD AND J. TANNER

m k Algorithm succ/test true pos fraction time (ms) iterations convergence rate

2622

141
NIHT 905/905 1(± 0) 44.93(± 0.7) 25.83(± 0.4) 1(± 4e-08)
HTP 896/896 1(± 0) 458.1(± 1e+01) 18.46(± 0.5) 1(± 0)
CSMPSP 899/899 0.9999(± 0.0007) 462.2(± 1e+01) 19.03(± 0.4) 1(± 0)

211
NIHT 906/906 1(± 0) 53.71(± 1) 30.52(± 0.7) 1(± 4e-08)
HTP 900/900 1(± 0) 496.3(± 5) 19.99(± 0.2) 1(± 0)
CSMPSP 0/895 0.8388(± 0.04) 616.4(± 7e+01) 25.33(± 3) 1(± 0)

253
NIHT 901/909 0.9961(± 0.04) 68.24(± 8) 38.39(± 4) 1(± 4e-08)
HTP 881/887 0.9971(± 0.04) 560.9(± 5e+01) 22.57(± 2) 1(± 0)
CSMPSP 0/899 0.6043(± 0.05) 653.2(± 4e+01) 26.83(± 2) 1(± 0)

15729

1239
NIHT 902/902 1(± 0) 50.89(± 0.8) 28.34(± 0.5) 1(± 6e-09)
HTP 909/909 1(± 0) 486.9(± 0.2) 19(± 0) 1(± 0)
CSMPSP 890/890 0.9987(± 0.001) 495.9(± 1e+01) 19.76(± 0.4) 1(± 0)

1858
NIHT 885/885 1(± 0) 63.18(± 0.6) 34.88(± 0.4) 1(± 2e-08)
HTP 892/892 1(± 0) 532.6(± 1e+01) 20.75(± 0.4) 1(± 0)
CSMPSP 0/895 0.8415(± 0.01) 521.3(± 9e+01) 20.75(± 4) 1(± 0)

2229
NIHT 997/997 1(± 0) 80.65(± 2) 43.93(± 1) 1(± 3e-08)
HTP 997/997 1(± 0) 623.4(± 2e+01) 24.27(± 0.8) 1(± 0)
CSMPSP 0/998 0.6641(± 0.02) 571.2(± 8e+01) 22.72(± 3) 1(± 0)

26215

2401
NIHT 994/994 1(± 0) 53.73(± 0.8) 29.24(± 0.4) 1(± 0)
HTP 996/996 1(± 0) 498.5(± 0.2) 19(± 0) 1(± 0)
CSMPSP 995/995 0.998(± 0.001) 513.5(± 4) 19.98(± 0.1) 1(± 0)

3601
NIHT 999/999 1(± 0) 67.87(± 0.9) 36.48(± 0.5) 1(± 1e-08)
HTP 996/996 1(± 0) 551.7(± 0.2) 21(± 0) 1(± 0)
CSMPSP 0/994 0.8536(± 0.008) 547.4(± 1e+02) 21.28(± 4) 1(± 5e-07)

4321
NIHT 992/992 1(± 0) 88.77(± 2) 46.89(± 1) 1(± 1e-08)
HTP 993/993 1(± 0) 663.3(± 2e+01) 25.22(± 0.8) 1(± 0)
CSMPSP 0/992 0.6897(± 0.01) 583.8(± 2e+02) 22.68(± 6) 1(± 5e-07)

75332

10451
NIHT 991/991 1(± 0) 63.62(± 2) 31.3(± 1) 1(± 0)
HTP 996/996 1(± 0) 549.4(± 1e+01) 19.02(± 0.4) 1(± 0)
CSMPSP 996/996 1(± 0) 595.3(± 2e+01) 21.03(± 0.7) 1(± 0)

15676
NIHT 992/992 1(± 0) 83.05(± 4) 40.16(± 2) 1(± 0)
HTP 997/997 1(± 0) 622(± 2e+02) 21.5(± 6) 1(± 0)
CSMPSP 0/998 0.9188(± 0.003) 1812(± 1e+03) 63.94(± 5e+01) 1(± 2e-07)

18811
NIHT 996/996 1(± 0) 114.3(± 6) 53.92(± 3) 1(± 2e-09)
HTP 995/995 1(± 0) 788.1(± 2e+02) 27.2(± 7) 1(± 0)
CSMPSP 0/991 0.7794(± 0.007) 2207(± 1e+03) 77.84(± 5e+01) 1(± 3e-07)

161288

37721
NIHT 997/997 1(± 0) 212.6(± 4e+02) 90.42(± 2e+02) 1(± 0)
HTP 998/998 1(± 0) 1230(± 1e+03) 36.68(± 4e+01) 1(± 0)
CSMPSP 995/995 1(± 0) 1240(± 1e+03) 37.66(± 4e+01) 1(± 0)

56581
NIHT 995/995 1(± 0) 328.2(± 5e+02) 135.4(± 2e+02) 1(± 0)
HTP 992/992 1(± 0) 1400(± 1e+03) 41.65(± 4e+01) 1(± 0)
CSMPSP 992/992 1(± 2e-06) 2559(± 2e+03) 77.47(± 5e+01) 1(± 0)

67897
NIHT 998/998 1(± 0) 410.2(± 6e+02) 166.4(± 2e+02) 1(± 0)
HTP 997/997 1(± 0) 2040(± 2e+03) 60.65(± 5e+01) 1(± 0)
CSMPSP 996/996 0.9997(± 0.0001) 3134(± 1e+03) 94.56(± 4e+01) 1(± 3e-06)

Table IV. Performance of NIHT, HTP, and CSMPSP for (DCT,Bε) with n=262144

m k Algorithm succ/test true pos fraction time (ms) iterations convergence rate

246

19
NIHT 892/892 1(± 0) 21.44(± 1) 27.75(± 1) 1(± 3e-08)
HTP 901/901 1(± 0) 162.2(± 5) 18.42(± 0.6) 1(± 0)
CSMPSP 892/892 1(± 0) 166.4(± 1e+01) 19.3(± 2) 1(± 0)

28
NIHT 899/909 0.9947(± 0.05) 28.03(± 2e+01) 35.64(± 2e+01) 1(± 3e-08)
HTP 877/897 0.9904(± 0.07) 185.6(± 3e+01) 21.05(± 3) 1(± 0)
CSMPSP 894/896 0.9988(± 0.02) 194.4(± 6e+01) 22.53(± 7) 1(± 5e-07)

34
NIHT 554/902 0.8094(± 0.3) 48.63(± 8e+01) 58.88(± 1e+02) 1(± 1e-05)
HTP 570/907 0.8266(± 0.2) 233.8(± 7e+01) 26.41(± 7) 1(± 0)
CSMPSP 706/890 0.9014(± 0.2) 336.1(± 3e+02) 38.95(± 3e+01) 1(± 6e-06)

410

37
NIHT 900/900 1(± 0) 28.82(± 1) 29.46(± 1) 1(± 2e-08)
HTP 908/908 1(± 0) 229.2(± 6) 18.78(± 0.5) 1(± 0)
CSMPSP 882/882 1(± 0) 244.3(± 7e+01) 20.46(± 6) 1(± 9e-08)

56
NIHT 875/887 0.9944(± 0.05) 39.26(± 5) 39.54(± 4) 1(± 3e-08)
HTP 861/878 0.9928(± 0.05) 273.3(± 4e+01) 22.37(± 4) 1(± 0)
CSMPSP 910/910 1(± 0) 348.1(± 2e+02) 29.14(± 2e+01) 1(± 5e-06)

67
NIHT 425/886 0.7834(± 0.2) 54.31(± 4e+01) 52.59(± 3e+01) 1(± 3e-08)
HTP 376/867 0.7653(± 0.2) 367.6(± 1e+02) 29.99(± 8) 1(± 0)
CSMPSP 742/896 0.9265(± 0.2) 1014(± 6e+02) 84.81(± 5e+01) 1(± 2e-05)

1178

153
NIHT 886/886 1(± 0) 68.01(± 2) 34.1(± 0.8) 1(± 2e-08)
HTP 895/895 1(± 0) 562.8(± 1e+01) 19.42(± 0.5) 1(± 0)
CSMPSP 885/885 1(± 0) 1098(± 1e+03) 38.74(± 3e+01) 1(± 3e-06)

230
NIHT 877/881 0.9987(± 0.02) 102.8(± 9) 51.2(± 5) 1(± 3e-08)
HTP 890/898 0.9976(± 0.03) 715.8(± 9e+01) 24.69(± 3) 1(± 0)
CSMPSP 893/893 1(± 0) 3080(± 1e+03) 108.6(± 4e+01) 1(± 2e-05)

275
NIHT 135/904 0.7259(± 0.1) 142.3(± 3e+01) 69.12(± 2e+01) 1(± 2e-08)
HTP 51/897 0.6837(± 0.1) 917.7(± 3e+02) 31.6(± 9) 1(± 0)
CSMPSP 871/899 0.9902(± 0.06) 3561(± 3e+02) 125.5(± 1e+01) 1(± 5e-05)

2521

477
NIHT 897/897 1(± 0) 157.1(± 3) 41.78(± 0.9) 1(± 3e-08)
HTP 891/891 1(± 0) 1188(± 3e+01) 20.43(± 0.5) 1(± 0)
CSMPSP 901/901 1(± 0) 6969(± 1e+03) 122.5(± 2e+01) 1(± 1e-05)

716
NIHT 887/904 0.9965(± 0.03) 343.5(± 6e+01) 90.94(± 1e+01) 1(± 2e-08)
HTP 638/910 0.9434(± 0.09) 2257(± 5e+02) 38.81(± 9) 1(± 0)
CSMPSP 899/899 1(± 0) 7210(± 3e+02) 126.8(± 5) 1(± 7e-05)

859
NIHT 1/880 0.7468(± 0.03) 404.8(± 8e+01) 106.1(± 2e+01) 1(± 2e-08)
HTP 0/922 0.6984(± 0.02) 1941(± 5e+02) 33.37(± 9) 1(± 0)
CSMPSP 882/893 0.9974(± 0.02) 7225(± 4e+01) 127(± 0.7) 0.9999(± 0.0002)

Table V. Performance of NIHT, HTP, and CSMPSP for (N , Bε) with n=4096
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Figure 9. Left panels: Algorithm selection maps with moderate noise ε = 1/10. Right panels: Average time
for the fastest algorithm. Panels (a-b) (DCT,Bε) with n = 217, (c-d) (S7, Bε) with n = 217, and (e-f)

(N , Bε) with n = 213.

in Secs. 3 and 4.1 will produce recovery phase transitions, algorithm selection maps, ratios of
recovery time to the fastest algorithm, and information about the concentration of performance
characteristics for the algorithms. The total combinations result in more information than can be
readily presented in a single article. Here we present seven observations which highlight several
findings which may be significant when selecting a recovery algorithm.

The recovery regions of NIHT, HTP, and CSMPSP for the problem classes (Mat, vec) for
Mat ∈ {N ,Sp, DCT} and vec ∈ {U,N,Uε, Nε} are identified in Obs. 4.2.1–4.2.3 and App. C.
Figures 26–29 identify the recovery regions; similar relationships between the recovery regions for
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Figure 10. Panel (a), time for fastest algorithm for (DCT,Bε) with ε = 1/10 and n = 217. Ratio of average
time for NIHT, HTP, and CSMPSP over the fastest algorithm in (b-d) respectively.

the algorithms to those depicted in Fig. 1 persist for vec ∈ {U,N,Uε, Nε}. Notable exceptions are
identified by the following observations.

Observation 4.2.1
For problem classes (Mat, U) with Mat ∈ {N ,S7, DCT}, and δ ∈ [1/20, 1/2], the recovery phase
transitions for NIHT and HTP have phase transition curves within 0.02 of each other. For (DCT,U)
CSMPSP has the lowest PT curve but has the highest phase transition curve for (N , U) and (Sp, U).
(See Fig. 26.)

Observation 4.2.2
For moderate noise ε = 1/10 and problem classes (Mat, Uε) with Mat ∈ {N ,S7, DCT}, and
δ ∈ [1/20, 1/2], the recovery phase transitions for NIHT and HTP have phase transition curves
within 0.02 of each other. For (DCT,Uε) the phase transition curves for all algorithms have similar
relationships to those in Obs. 4.2.1. Moreover, for (N , Uε) and (S7, Uε) and δ ∈ [1/20, 1/4], the
recovery phase transitions for NIHT, HTP, and CSMPSP have phase transition curves within 0.02
of each other, but as δ exceeds approximately 1/2 the recovery phase transition for CSMPSP
increasingly falls below those of NIHT and HTP. (See Fig. 27.)

Observation 4.2.3
For problem classes (Mat,N) and (Mat,Nε), the recovery phase transition curves for the
algorithms have qualitatively similar behavior to the associated phase transition curves for vector
ensembles U and Uε as detailed in Obs. 4.2.1 and 4.2.2. The notable exceptions are

(i) ρniht(N ,N)(δ) which suffers from a large phase transition region when both the matrix ensemble
and vector ensemble are normally distributed (Obs. C.1);
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Figure 11. Panel (a), time for fastest algorithm for (S7, Bε) with ε = 1/10 and n = 217. Ratio of average
time for NIHT, HTP, and CSMPSP over the fastest algorithm in (b-d) respectively.

(ii) HTP has a noticeably higher phase transition curve than NIHT for problem classes (Mat,N),
(DCT,Nε), and (N , N). (See Fig. 28–29.)

Important information omitted from the recovery phase transitions is encapsulated in identifying
which algorithm boasts the smallest time for successful recovery. Summary information regarding
algorithm selection is given by Obs. 4.2.4, 4.2.5, and 4.2.6 for each matrix ensemble DCT , S7, and
N , respectively. The algorithm selection maps appear in Figs. 13 and 14 while the ratio of algorithm
times to the fastest algorithm appear in Figs. 30–35.

Observation 4.2.4
For the problem classes (DCT,Uε) or (DCT,Nε) with ε = 1/10, NIHT reliably recovers the
measured vector in the least amount of time for k/m / ρniht(DCT,vecε)

(δ) with δ / 1
2 . In this region,

HTP and CSMPSP have mean recovery times 5 to 10 times larger than the average recovery time
for NIHT. For k/m / ρniht(DCT,vecε)

(δ) with δ ∈ (0, 1), NIHT never requires more than 3 times the
fastest recovery time. (See Figs. 13–14, 30, and 33.)

Observation 4.2.5
For the problem classes (S7, Uε) or (S7, Nε) with ε = 1/10, HTP reliably recovers the measured
vector in the least amount of time for k/m / ρhtp(S7,vecε)(δ) with δ / 0.1. NIHT reliably recovers
the measured vector in the least time for δ ' 0.1 and never requires more than 2 times the fastest
recovery time for δ ∈ (0, 1). (See Figs. 13–14, 31, and 34.)

Observation 4.2.6
For the problem classes (N , Uε) or (N , Nε) with ε = 1/10, NIHT reliably recovers the measured
vector in less time than HTP or CSMPSP for k/m / ρniht(N ,vecε)(δ) with .002 / δ / 1. As k/m
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Figure 12. Panel (a), time for fastest algorithm for (N , Bε) with ε = 1/10 and n = 213. Ratio of average
time for NIHT, HTP, and CSMPSP over the fastest algorithm in (b-d) respectively.

increases to ρhtp(N ,vecε)(δ), HTP has the lowest recovery time. In the most extreme undersampling
situation, δ / .002, CSMPSP recovers the vector in the least time. For k/m / ρniht(N ,vecε)(δ) with
δ ∈ (0, 1), NIHT never requires more than 1.4 times the fastest recovery time. (See Figs. 13–14, 32,
and 35.)

Observations 4.2.4–4.2.6 coupled with Obs. 4.1.3 provide convincing evidence that when
recovering vectors from measurements contaminated with a moderate level of noise, NIHT is
the algorithm of choice. Restricting attention to the region of the phase space with at least two
times undersampling, m/n < 1/2, NIHT generally recovers a vector from noise contaminated
measurements faster than the other two algorithms. Importantly, the exceptions to this rule are
clearly identified in Obs. 4.2.4–4.2.6 and 4.1.3.

Observation 4.2.7
Across all problem classes (Mat, vec), the recovery phase transitions for the the sparse vector
ensemble B is typically lower than for U and N (See Figs. 15 and 36-38); specifically:

(i) For NIHT, HTP, and CSMPSP, ρalg(Mat,U)(δ) > ρalg(Mat,B)(δ) for Mat ∈ {N ,Sp, DCT};

(ii) For NIHT, HTP, and CSMPSP, ρalg(Mat,N)(δ) > ρalg(Mat,B)(δ) for Mat ∈ {N ,Sp, DCT} and
with the lone exception of ρniht(N ,N)(δ) < ρniht(Mat,B)(δ) as remarked in Obs. C.1;

(iii) For NIHT and HTP, alg ∈ {NIHT,HTP}, ρalg(Mat,Uε)
(δ) > ρalg(Mat,Bε)

(δ) for Mat ∈
{N ,Sp, DCT} and for CSMPSP with δ < 1

2 ;
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m k Algorithm succ/test true pos fraction time (ms) iterations convergence rate

656

32
NIHT 488/510 0.9708(± 0.1) 50.52(± 1e+02) 50.63(± 1e+02) 0.9843(± 0.1)
HTP 509/514 0.9903(± 0.1) 228.3(± 2e+01) 18.76(± 2) 0.9903(± 0.1)
CSMPSP 496/500 0.992(± 0.09) 257(± 1e+02) 21.43(± 1e+01) 0.992(± 0.09)

48
NIHT 0/496 0.3603(± 0.09) 764(± 1e+02) 739.8(± 9e+01) 0.9839(± 0.1)
HTP 472/478 0.9885(± 0.1) 261.5(± 3e+01) 21.53(± 3) 0.9895(± 0.1)
CSMPSP 511/520 0.9827(± 0.1) 371.9(± 3e+02) 31.2(± 3e+01) 0.9827(± 0.1)

58
NIHT 0/484 0.2509(± 0.07) 759.8(± 1e+02) 736.5(± 1e+02) 0.9793(± 0.1)
HTP 314/497 0.8389(± 0.2) 319.1(± 5e+01) 26.25(± 4) 0.9879(± 0.1)
CSMPSP 396/475 0.9141(± 0.2) 577.9(± 5e+02) 48.65(± 4e+01) 0.9789(± 0.1)

3933

305
NIHT 851/886 0.9789(± 0.1) 105(± 1e+02) 103.4(± 1e+02) 0.9865(± 0.1)
HTP 899/913 0.9847(± 0.1) 249.8(± 3e+01) 20.73(± 3) 0.9847(± 0.1)
CSMPSP 855/872 0.9804(± 0.1) 742.6(± 6e+02) 61.13(± 5e+01) 0.9805(± 0.1)

458
NIHT 769/910 0.9359(± 0.2) 214.3(± 2e+02) 206.7(± 2e+02) 0.9901(± 0.1)
HTP 876/885 0.9898(± 0.1) 292.5(± 3e+01) 24.03(± 3) 0.9898(± 0.1)
CSMPSP 895/904 0.99(± 0.1) 1387(± 4e+02) 112.5(± 4e+01) 0.99(± 0.1)

549
NIHT 219/895 0.6919(± 0.2) 217(± 2e+02) 205.4(± 2e+02) 0.981(± 0.1)
HTP 178/898 0.7125(± 0.2) 397.9(± 1e+02) 32.4(± 1e+01) 0.9844(± 0.1)
CSMPSP 863/874 0.9888(± 0.1) 1499(± 3e+02) 120.4(± 3e+01) 0.9897(± 0.1)

6554

589
NIHT 894/894 1(± 0) 59.6(± 1e+01) 60.34(± 1e+01) 1(± 2e-09)
HTP 883/883 1(± 0) 245.3(± 9) 20.66(± 0.7) 1(± 0)
CSMPSP 878/878 1(± 0) 939.9(± 6e+02) 77.47(± 5e+01) 1(± 1e-05)

883
NIHT 877/896 0.993(± 0.05) 133.7(± 1e+02) 130.3(± 1e+02) 1(± 2e-05)
HTP 898/898 1(± 0) 302(± 1e+01) 25(± 1) 1(± 0)
CSMPSP 889/898 0.9901(± 0.1) 1466(± 4e+02) 118.3(± 3e+01) 1(± 2e-05)

1060
NIHT 139/902 0.6925(± 0.2) 169.4(± 1e+02) 159.2(± 1e+02) 1(± 3e-05)
HTP 37/903 0.6625(± 0.1) 398.8(± 2e+02) 32.53(± 1e+01) 0.9779(± 0.1)
CSMPSP 899/899 0.9999(± 0.0003) 1543(± 2e+02) 123.6(± 2e+01) 1(± 2e-05)

18833

2460
NIHT 996/996 1(± 0) 71.12(± 8) 67.39(± 7) 1(± 0)
HTP 990/990 1(± 0) 280.9(± 6) 21.72(± 0.5) 1(± 0)
CSMPSP 995/995 1(± 0) 1513(± 4e+02) 116.3(± 3e+01) 1(± 2e-06)

3690
NIHT 996/996 1(± 0) 131(± 2e+01) 120.3(± 2e+01) 1(± 4e-09)
HTP 994/994 1(± 0) 386.2(± 1e+01) 29.53(± 1) 1(± 0)
CSMPSP 991/995 0.9964(± 0.06) 1507(± 6e+02) 107(± 4e+01) 1(± 9e-06)

4428
NIHT 1/998 0.674(± 0.1) 258.9(± 2e+02) 227.6(± 1e+02) 1(± 0)
HTP 0/998 0.6419(± 0.06) 948.8(± 6e+02) 71.91(± 4e+01) 0.991(± 0.09)
CSMPSP 996/999 0.9984(± 0.03) 1761(± 4e+02) 118.7(± 3e+01) 1(± 2e-05)

40322

7656
NIHT 997/997 1(± 0) 81.28(± 1e+01) 72.41(± 1e+01) 1(± 0)
HTP 995/995 1(± 0) 333.5(± 1e+02) 23.84(± 8) 1(± 0)
CSMPSP 998/998 1(± 0) 1774(± 7e+02) 104.9(± 4e+01) 1(± 4e-06)

11484
NIHT 993/993 1(± 9e-06) 250.7(± 3e+01) 194.3(± 2e+01) 1(± 7e-09)
HTP 498/996 0.9194(± 0.08) 1449(± 5e+02) 91.27(± 3e+01) 1(± 5e-05)
CSMPSP 993/993 1(± 0.0001) 2282(± 7e+02) 114.8(± 3e+01) 1(± 2e-05)

13780
NIHT 0/995 0.7397(± 0.02) 500.3(± 2e+02) 354.2(± 2e+02) 1(± 0)
HTP 0/997 0.6944(± 0.009) 1541(± 7e+02) 90.54(± 4e+01) 1(± 0)
CSMPSP 993/995 1(± 0.0002) 2710(± 3e+02) 125.5(± 1e+01) 1(± 4e-05)

Table VI. Performance of NIHT, HTP, and CSMPSP for (S7, Bε) with n=65536

(iv) For NIHT and HTP, ρalg(Mat,Nε)
(δ) > ρalg(Mat,Bε)

(δ) forMat ∈ {N ,Sp, DCT} and for CSMPSP
with δ < 1

2 .

There have been several cases [32, 33, 34] where it has been shown that of all problem classes
(N , vec), vec = B is the most challenging vector ensemble for greedy algorithms. Observation 4.2.7
supports these claims while extending them to the matrix ensembles Sp and DCT and to the setting
of noisy measurements vec ∈ {Bε, Uε, Nε}. Figure 15 depicts this behavior with matrix ensemble
S7 where the recovery phase transition curves for NIHT, HTP, and CSMPSP are plotted for vec
taking all values {B,U,N} or {Bε, Uε, Nε} for each algorithm. Figures 36-38 depict this behavior
for the remaining matrix ensembles.

5. CONCLUSION

In compressed sensing one seeks to identify both a measurement process of a k sparse vector that
requires very few measurements and a computationally efficient recovery algorithm which will
identify the measured vector. In this paper, previous empirical studies identifying the recovery
regions for a particular problem class have been extended to include alternate vector ensembles
and the effects of noise. As the problem instances approach the recovery phase transition curve,
the convergence of the iterative algorithms can be arbitrarily slow. Therefore, a practitioner needs
to identify the number of measurements required to push the ratio k/m into the algorithms’
recovery regions. Often, this results in a problem size where multiple algorithms will reliably
return the correct solution. This paper focuses on distinguishing the performance of the algorithms,
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Figure 13. Left panels: Algorithm selection maps with moderate noise ε = 1/10. Right panels: Average
time for the fastest algorithm. Panels (a-b) (DCT,Uε) with n = 217, (c-d) (S7, Uε) with n = 217, and (e-f)

(N , Uε) with n = 213.

particularly in the regions where multiple algorithms typically succeed. The algorithm selection
maps included in this paper inform practitioners and theorists of the algorithm that is able to
reliably recover the measured vector in the least computation time. Furthermore, the concentration
of performance characteristics for each algorithm tells practitioners that an algorithm will have
consistent, predictable behavior and provides a foundation for the observations and claims made by
this article.

This manuscript is quantitative where precise statements provide valuable information and is
qualitative for statements where further precision is of limited value. Highly quantitative statements
can be readily obtained by performing a large number of tests for a given problem instance, and
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Figure 14. Left panels: Algorithm selection maps with moderate noise ε = 1/10. Right panels: Average
time for the fastest algorithm. Panels (a-b) (DCT,Nε) with n = 217, (c-d) (S7, Nε) with n = 217, and (e-f)

(N , Nε) with n = 213.

the software, GAGA [36], is designed to handle such large-scale testing. However, many of the
most interesting observations in this paper would not be substantially more informative when made
more quantitative. The algorithm selection maps identify the fastest algorithm and the associated
recovery time ratios provide a general idea of how each algorithm compares to the fastest; a precise
identification of this ratio is of secondary importance. Claims 1–6 provide a general summary of
the substantial amount of data contained in this manuscript. These claims are informed by the
more specific observations from Secs. 3–4 and Apps. A–F. Conducting additional performance
comparisons for other algorithms and formally testing hypotheses regarding algorithm behavior can
be readily accomplished using GAGA [35, 36] and is slated for future work.
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Figure 15. 50% recovery probability logistic regression curves for Mat = S7 with n = 217 and for each
vec ∈ {B,U,N} for (a) NIHT, (c) HTP, and (e) CSMPSP, and for each vec ∈ {Bε, Uε, Nε} with ε = 1/10

for (b) NIHT, (e) HTP, and (f) CSMPSP.
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A. CONCENTRATION OF RECOVERY PHASE TRANSITIONS FOR (Mat,B)

Sec. 3.1 discusses the recovery phase transitions of the problem classes (Mat,B) forMat ∈ {N ,Sp, DCT}
with p = 4 and 7, but only presents data for a single value of n per problem class. This appendix includes
further data on the recovery phase transition curves for this problem class at smaller values of n and including
the algorithm IHT. Along with presenting the 50% recovery phase transitions in the left panels of each figure,
the right panels include the gap between the 10% and 90% recovery curves of the logistic regressions. The
plots show quantitative convergence of the recovery phase transitions toward those shown in Fig. 1.

Copyright c© J.D. Blanchard and J. Tanner. (0000)



GREEDY ALGORITHMS FOR COMPRESSED SENSING 31

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

← n=210

← n=212

← n=214

← n=216

← n=218

← n=220

IHT for (DCT,B)

δ=m/n

ρ=
k/

m

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

← n=210

← n=212 ← n=214

← n=216
← n=218

← n=220

Gap between 10% and 90% success for IHT for (DCT,B)

δ=m/n

ρ=
k/

m

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

← n=210
← n=212

← n=214

← n=216

← n=218

← n=220

NIHT for (DCT,B)

δ=m/n

ρ=
k/

m

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

← n=210

← n=212

← n=214

← n=216
← n=218 ← n=220

Gap between 10% and 90% success for NIHT for (DCT,B)

δ=m/n

ρ=
k/

m

(c) (d)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

← n=210

← n=212

← n=214

← n=216

← n=218

← n=220

HTP for (DCT,B)

δ=m/n

ρ=
k/

m

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

← n=210

← n=212

← n=214

← n=216 ← n=218 ← n=220

Gap between 10% and 90% success for HTP for (DCT,B)

δ=m/n

ρ=
k/

m

(e) (f)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

← n=210← n=212

← n=214

← n=216

← n=218

← n=220

CSMPSP for (DCT,B)

δ=m/n

ρ=
k/

m

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

← n=210

← n=212

← n=214
← n=216 ← n=218 ← n=220

Gap between 10% and 90% success for CSMPSP for (DCT,B)

δ=m/n

ρ=
k/

m

(g) (h)

Figure 16. Left panels: 50% recovery probability logistic regression curves for (DCT,B) and n = 2j with
j = 10, 12, 14, 16, 18, 20. Right panels: gap between 10% and 90% recovery probability curves. Results

shown for the algorithms: IHT (a-b), NIHT (c-d), HTP (e-f), and CSMPSP (g-h).

B. ALGORITHM SELECTION MAPS FOR (Mat,B) AT SMALLER VALUES OF n

Sec. 3.2 presents algorithm selection maps and average recovery times for the problem classes (Mat,B)
for Mat ∈ {N ,Sp, DCT} with p = 7, but only presents data for a single value of n per problem class. This
appendix includes similar algorithm selection maps for smaller values of n, showing that the selection maps
are consistent for large n. Algorithm selection maps and average recovery times are also presented here for
the problem class (S4, B), showing that the selection maps for (Sp, B) are consistent for smaller values of
p. Larger values of p are considered in App. F.

Copyright c© J.D. Blanchard and J. Tanner. (0000)



32 J. D. BLANCHARD AND J. TANNER

0 0.2 0.4 0.6 0.8 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

← n=210

← n=212

← n=214

IHT for (N ,B)

δ=m/n

ρ=
k/

m

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

← n=210

← n=212

← n=214

Gap between 10% and 90% success for IHT for (N ,B)

δ=m/n

ρ=
k/

m

(a) (b)

0 0.2 0.4 0.6 0.8 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

← n=210

← n=212

← n=214

NIHT for (N ,B)

δ=m/n

ρ=
k/

m

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

← n=210

← n=212

← n=214

Gap between 10% and 90% success for NIHT for (N ,B)

δ=m/n

ρ=
k/

m

(c) (d)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

← n=210

← n=212

← n=214

HTP for (N ,B)

δ=m/n

ρ=
k/

m

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

← n=210

← n=212

← n=214

Gap between 10% and 90% success for HTP for (N ,B)

δ=m/n

ρ=
k/

m

(e) (f)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

← n=210

← n=212

← n=214

CSMPSP for (N ,B)

δ=m/n

ρ=
k/

m

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

← n=210

← n=212

← n=214

Gap between 10% and 90% success for CSMPSP for (N ,B)

δ=m/n

ρ=
k/

m

(g) (h)

Figure 17. Left panels: 50% recovery probability logistic regression curves for (N , B) and n = 2j with
j = 10, 12, 14. Right panels: gap between 10% and 90% recovery probability curves. Results shown for the

algorithms: IHT (a-b), NIHT (c-d), HTP (e-f), and CSMPSP (g-h).

C. RECOVERY PHASE TRANSITIONS FOR ALTERNATE VECTOR ENSEMBLES

Section 4.2 includes a discussion of the recovery phase transitions for the sparse vector ensembles U
and N . This appendix contains the representations of the data used for Obs. 4.2.1–4.2.3. Figures 26–29
present the recovery phase transition curves for the problem classes (Mat, vec) for Mat ∈ {N ,S7, DCT}
and vec ∈ {U,Uε, N,Nε} with ε = 1/10. For some problem classes, the recovery phase transition curves
lack smoothness and for (N , N) the recovery phase transition curve is not monotonically increasing. The
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Figure 18. Left panels: 50% recovery probability logistic regression curves for (S4, B) and n = 2j with
j = 10, 12, 14, 16, 18. Right panels: gap between 10% and 90% recovery probability curves. Results shown

for the algorithms: IHT (a-b), NIHT (c-d), HTP (e-f), and CSMPSP (g-h).

following observation is useful when interpreting the data presented in Figures 26–29 and is explicitly
invoked in Obs. 4.2.3 and 4.2.7.

Observation C.1
For the problem class (Mat, vec) withMat ∈ {N ,Sp, DCT} and vec ∈ {U,N}, the phase transition region
for each algorithm can be much wider than observed for vec = B. In some cases, the phase transition region
is large enough to cause ρalg

(Mat,vec)
(δ) to lack the expected smoothness and monotonicity. (See Fig. 25.)
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Figure 19. Left panels: 50% recovery probability logistic regression curves for (S7, B) and n = 2j with
j = 10, 12, 14, 16, 18. Right panels: gap between 10% and 90% recovery probability curves. Results shown

for the algorithms: IHT (a-b), NIHT (c-d), HTP (e-f), and CSMPSP (g-h).

As stated in Obs. C.1, the greedy algorithms’ transition regions can be much wider when recovering
vectors from the alternate distributions, even in the noiseless setting. From App. A the transition region
widths depicted in Figs. 16–19 are essentially bounded above by 0.02 for problem classes (Mat,B) with
n ≥ 216 for Mat ∈ {Sp, DCT} and n ≥ 212 for Mat = N . For comparable problem sizes on the alternate
vector ensembles vec ∈ {U,N}, the transition regions can be 5 to 20 times as wide. In Fig. 29, we show three
representative recovery phase transitions ρalg

(Mat,vec)
(δ) (a,c,e) together with the associated transition region
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Figure 20. Left panels: Algorithm selection maps for problem class (DCT,B). Right panels: Average time
for the fastest algorithm. Panels (a-b) with n = 216 and (c-d) with n = 218.
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Figure 21. Left panels: Algorithm selection maps for problem class (N , B). Right panels: Average time for
the fastest algorithm. Panels (a-b) with n = 210 and (c-d) with n = 212.
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Figure 22. Left panels: Algorithm selection maps for problem class (S4, B). Right panels: Average time for
the fastest algorithm. Panels (a-b) with n = 214, (c-d) with n = 216, and (e-f) with n = 218.

width (b,d,f). In each of these cases, ρalg
(Mat,vec)

(δ) lacks the now familiar smoothness and monotonicity of
recovery phase transitions in sparse approximation.

D. ALGORITHM SELECTION MAPS FOR ALTERNATE VECTOR ENSEMBLES

In Sec. 4.2, algorithm selection maps are presented for (Mat, vec) with vec ∈ {Uε, Nε}. This appendix
contains the representations of the data used for Obs. 4.2.4 –4.2.6. Figures 30–35 present the ratio of the
recovery time for each algorithm to the fastest recovery time in the union of the recovery regions for problem
classes (Mat, Uε) and (Mat,Nε). Note the ratio of recovery time for NIHT to the fastest algorithm is
consistently small and almost always one for the matrix ensembles S7 and N .
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Figure 23. Panel (a), time for fastest algorithm for (S4, B) with n = 214. Ratio of average time for NIHT,
HTP, and CSMPSP over the fastest algorithm in (b-d) respectively.
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Figure 24. Left panels: Algorithm selection maps for problem class (S7, B). Right panels: Average time for
the fastest algorithm. Panels (a-b) with n = 214 and (c-d) with n = 216.
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Figure 25. Left panels: 50% recovery probability logistic regression curves. Right panels: gap between 10%
and 90% recovery probability curves. (a-b) HTP for (DCT,U); (c-d) CSMPSP for (DCT,U); (e-f) NIHT

with (N , U).

E. COMPARISONS OF ALTERNATE VECTOR ENSEMBLES

Observation 4.2.7 in Sec. 4.2 states that the recovery phase transition for NIHT, HTP, and CSMPSP is
lowest for the sparse vector ensemble B. This appendix contains the representations of the data used for
Obs. 4.2.7. Figures 36–38 present the recovery phase transition curves for NIHT, HTP, and CSMPSP
for the problem classes (Mat, vec) where Mat is a fixed member of the set {N ,S4, DCT} while
vec takes on each value in one of the two sets {B,U,N} or {Bε, Uε, Nε}. The problem classes with
Mat = S7 appear in Sec. 4.2 as Fig. 15. For NIHT and HTP and all matrix ensembles, the recovery
phase transition curves ρalg

(Mat,vec)
(δ) > ρalg

(Mat,B)
(δ) for vec ∈ {U,N} and ρalg

(Mat,vec)
(δ) > ρalg

(Mat,Bε)
(δ)

for vec ∈ {Uε, Nε}. While ρcsmpsp
(Mat,U)

(δ) > ρcsmpsp
(Mat,B)

(δ) and ρcsmpsp
(Mat,N)

(δ) > ρcsmpsp
(Mat,B)

(δ), the addition of
moderate levels of noise (ε = 1/10)) forces the recovery phase transition curves for problem classes
(Mat, vec), Mat ∈ {Sp,N} and vec ∈ {Uε, Nε} to fall below the related curves for vector ensemble Bε
as m/n approaches one.

F. ROLE OF NONZEROS PER COLUMN ON PROBLEM CLASSES (Sp, vec)

This appendix briefly investigates the role of the number of nonzeros per column in the sparse matrix
ensemble Sp. For computational reasons, using very few nonzeros per column provides a relatively fast
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Figure 26. 50% recovery probability logistic regression curves for vec = U and algorithms NIHT, HTP, and
CSMPSP: (a)Mat = DCT with n = 217, (b)Mat = N with n = 213, (c)Mat = S4 with n = 217, and (d)

Mat = S7 with n = 217.

matrix multiplication. Sections 3 and 4 focus on p = 4 or p = 7 with an emphasis placed on p = 7. Increasing
the number of nonzeros from p = 7 to p = 13 requires roughly 1.85 times as many computations, yet there
is only a minor increase in the recovery phase transition. Figures 39 and 40 present the recovery phase
transitions of a fixed algorithm for the problem classes (Sp, vec), p = 4, 7, 13, displaying the three recovery
phase transition curves together on a single plot for a fixed vector ensemble vec ∈ {B,U,N,Bε, Uε, Nε}.
This data supports our focus on S7 while also demonstrating that very few nonzeros per column p = 4 can
still lead to a reasonably sized recovery region.

Observation F.1
For problem classes (Sp, vec) with vec ∈ {B,U,N,Bε, Uε, Nε} increasing the number of nonzeros per
column from p = 4 to p = 7 increases the area of the recovery phase transition curve for NIHT, HTP, and
CSMPSP from between 8% and 17%; in contrast, further increasing the number of nonzeros per column
from p = 7 to p = 13 never increases the area of the recovery phase transition by more than 3%. (See
Figs. 39 and 40.)
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Figure 28. 50% recovery probability logistic regression curves for vec = N and algorithms NIHT, HTP, and
CSMPSP: (a)Mat = DCT with n = 217, (b)Mat = N with n = 213, (c)Mat = S4 with n = 217, and (d)

Mat = S7 with n = 217.
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Figure 29. 50% recovery probability logistic regression curves for vec = Nε with ε = 1/10 and algorithms
NIHT, HTP, and CSMPSP: (a) Mat = DCT with n = 217, (b) Mat = N with n = 213, (c) Mat = S4 with

n = 217, and (d) Mat = S7 with n = 217.
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Figure 30. Panel (a), time for fastest algorithm for (DCT,Uε) with ε = 1/10 and n = 217. Ratio of average
time for NIHT, HTP, and CSMPSP over the fastest algorithm in (b-d) respectively.
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Figure 31. Panel (a), time for fastest algorithm for (S7, Uε) with ε = 1/10 and n = 217. Ratio of average
time for NIHT, HTP, and CSMPSP over the fastest algorithm in (b-d) respectively.
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Figure 32. Panel (a), time for fastest algorithm for (N , Uε) with ε = 1/10 and n = 213. Ratio of average
time for NIHT, HTP, and CSMPSP over the fastest algorithm in (b-d) respectively.
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Figure 33. Panel (a), time for fastest algorithm for (DCT,Nε) with ε = 1/10 and n = 217. Ratio of average
time for NIHT, HTP, and CSMPSP over the fastest algorithm in (b-d) respectively.
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Figure 34. Panel (a), time for fastest algorithm for (S7, Nε) with ε = 1/10 and n = 217. Ratio of average
time for NIHT, HTP, and CSMPSP over the fastest algorithm in (b-d) respectively.
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Figure 35. Panel (a), time for fastest algorithm for (N , Nε) with ε = 1/10 and n = 213. Ratio of average
time for NIHT, HTP, and CSMPSP over the fastest algorithm in (b-d) respectively.
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Figure 36. 50% recovery probability logistic regression curves for Mat = DCT with n = 217 and for each
vec ∈ {B,U,N} for (a) NIHT, (c) HTP, and (e) CSMPSP, and for each vec ∈ {Bε, Uε, Nε} with ε = 1/10

for (b) NIHT, (e) HTP, and (f) CSMPSP.
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Figure 37. 50% recovery probability logistic regression curves for Mat = N with n = 213 and for each
vec ∈ {B,U,N} for (a) NIHT, (c) HTP, and (e) CSMPSP, and for each vec ∈ {Bε, Uε, Nε} with ε = 1/10

for (b) NIHT, (e) HTP, and (f) CSMPSP.

Copyright c© J.D. Blanchard and J. Tanner. (0000)



48 J. D. BLANCHARD AND J. TANNER

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

← vec = B

← vec = N

← vec = U

50% phase transition curve for NIHT for (S
4
,vec) with n = 217

δ=m/n

ρ=
k/

m

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

← vec = Bε

← vec = Nε

← vec = Uε

50% phase transition curve for NIHT for (S
4
,vec) with n = 217

δ=m/n

ρ=
k/

m
(a) (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

← vec = B

← vec = N

← vec = U

50% phase transition curve for HTP for (S
4
,vec) with n = 217

δ=m/n

ρ=
k/

m

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

← vec = Bε

← vec = Nε

← vec = Uε

50% phase transition curve for HTP for (S
4
,vec) with n = 217

δ=m/n

ρ=
k/

m

(c) (d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

← vec = B

← vec = N

← vec = U

50% phase transition curve for CSMPSP for (S
4
,vec) with n = 217

δ=m/n

ρ=
k/

m

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

← vec = Bε

← vec = Nε

← vec = Uε

50% phase transition curve for CSMPSP for (S
4
,vec) with n = 217

δ=m/n

ρ=
k/

m

(e) (f)

Figure 38. 50% recovery probability logistic regression curves for Mat = S4 with n = 217 and for each
vec ∈ {B,U,N} for (a) NIHT, (c) HTP, and (e) CSMPSP, and for each vec ∈ {Bε, Uε, Nε} with ε = 1/10

for (b) NIHT, (e) HTP, and (f) CSMPSP.
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Figure 39. 50% recovery probability logistic regression curves for Mat = Sp with n = 217 and for p = 4,
7, and 13 in each plot. Left, center, and right panels are vec = B, vec = U , and vec = N respectively.

Algorithms: NIHT (a-c), HTP (d-f), and CSMPSP (g-i).
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Figure 40. 50% recovery probability logistic regression curves for Mat = Sp with n = 217 and for p = 4, 7,
and 13 in each plot. Left, center, and right panels are vec = Bε, vec = Uε, and vec = Nε respectively with

ε = 1/10. Algorithms: NIHT (a-c), HTP (d-f), and CSMPSP (g-i).
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