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Abstract—This paper considers conditions based on the re-
stricted isometry constant (RIC) under which the solution of an
underdetermined linear system with minimal `p norm, 0 < p ≤ 1,
is guaranteed to be also the sparsest one. Specifically matrices are
identified that have RIC, δ2m, arbitrarily close to 1/

√
2 ≈ 0.707

where sparse recovery with p = 1 fails for at least one m-sparse
vector. This indicates that there is limited room for improvement
over the best known positive results of Foucart and Lai, which
guarantee that `1-minimisation recovers all m-sparse vectors for
any matrix with δ2m < 2(3−√2)/7 ≈ 0.4531.

We also present results that show, compared to `1 minimisa-
tion, `p minimisation recovery failure is only slightly delayed in
terms of the RIC values. Furthermore when `p optimisation is
attempted using an iterative reweighted `1 scheme, failure can
still occur for δ2m arbitrarily close to 1/

√
2.

I. INTRODUCTION AND STATE OF THE ART

This paper considers conditions under which the solution
ŷ of minimal `p norm, 0 < p ≤ 1, of an underdetermined
linear system x = Φy is guaranteed to be also the sparsest
one. This is a central problem in sparse overcomplete signal
representations, where x is a vector representing some signal
or image, Φ is an overcomplete signal dictionary, and y is
a sparse representation of the signal. This problem is also at
the core of compressed sensing, where Φ is called a sensing
matrix and x is a collection of M linear measurements of
some ideally sparse data y.

Given a vector x ∈ RM and a matrix

Φ ∈ RM×N

with M < N , we are interested in sparse solutions to x = Φy.
We will denote by ‖y‖p the `p sparsity measure defined as:

‖y‖p :=
( N∑

j=1

|yj |p
)1/p

where 0 < p ≤ 1. When p = 0, ‖y‖0 denotes the `0 pseudo-
norm that counts the number of non-zero elements of y. The
coefficient vector y is said to be m-sparse if ‖y‖0 ≤ m. We
will use N (Φ) for the null space of Φ. We will also make
use of the subscript notation yΩ to denote a vector that is
equal to some y on the index set Ω and zero everywhere else.
Denoting |Ω| the cardinality of Ω, the vector yΩ is |Ω|-sparse

and we will say that the support of the vector y lies within
Ω whenever yΩ = y. For matrices the subscript notation ΦΩ

will denote a submatrix composed of the columns of Φ that
are indexed in the set Ω.

A. Known conditions for `p sparse recovery

It has been shown in [15] that if:

‖zΩ‖p < ‖zΩc‖p (1)

holds for all nonzero z ∈ N (Φ) then any vector y? whose
support lies within Ω, can be recovered as the unique solution
of the following optimisation problem (which is non-convex
for 0 ≤ p < 1):

ŷ = argmin
y

‖y‖p s.t. Φy = Φy?. (2)

Hence if (1) holds for all z ∈ N (Φ) and all index sets Ω
of size m, then any m-sparse vector y? is recovered as the
unique minimiser of (2). Furthermore this condition is tight
[16], [17]

Using (2), particularly when p = 1, has become a popular
mean of solving for sparse representations. An important
characteristic of a dictionary that guarantees recovery in this
case is the Restricted Isometry Property (RIP). For a matrix Φ
the restricted isometry constant, δk, is defined as the smallest
number such that:

(1− δk) ≤ ‖ΦyΩ‖22
‖yΩ‖22

≤ (1 + δk) (3)

for every vector y and every index set Ω with |Ω| ≤ k. As
the upper and lower bounds play fundamentally different roles
we will further consider the matrix to have been appropriately
rescaled so that both the upper and the lower bound are tight.

The RIC’s importance can be linked with the following
results:

1) Every m-sparse representation is unique if and only if
[10]

δ2m < 1 (4)

for an appropriately re-scaled dictionary. Furthermore
almost every dictionary Φ ∈ RM×N with M ≥ 2m sat-
isfies this condition (again with appropriate re-scaling).



Foucart and Lai [14] have also shown that for a given
dictionary with δ2m+2 < 1 there exists a sufficiently
small p for which solving (2) is guaranteed to recover
any m-sparse vector.

2) If
δ2m < 2(3−

√
2)/7 ≈ 0.4531 (5)

then every m-sparse representation can be exactly recov-
ered using linear programming to solve (2) with p = 1,
[14]. Furthermore most dictionaries Φ ∈ RM×N (sam-
pled from an appropriate probability model) will have
an RIC δ2m < δ as long as: M ≥ Cδ−1m log(N/m),
where C is some constant [1].

The RIC also bounds the condition number, κ, of submatrices,
ΦΩ, of a dictionary,

κ(ΦΩ) ≤
√

1 + δk

1− δk
, |Ω| ≤ k (6)

(indeed, Foucart and Lai [14] formulated their results in
asymmetric bounds αk ≤ ‖ΦyΩ‖22/‖yΩ‖22 ≤ βk that provide
a sharper bound on the maximal submatrix condition number,
with less re-scaling issues). This in turn bounds the Lipschitz
constant of the inverse mapping resulting from solving the
optimisation problem (2). In this regard the RIC also plays
an important role in the noisy recovery problems [4], [14]:
x = Φy + ε where ε is an unknown but bounded noise term.

Note that when (5) holds all the 2m-submatrices have
condition number κ(ΦΩ) ≤ 1.7 when |Ω| ≤ 2m, so they
are extremely well behaved. In contrast, δ2m < 1 imposes the
finiteness of the condition number of the submatrices as the
only constraint.

B. New results

It is an open question as to how much better we could expect
to do, i.e. how large can we set δ ≤ 1 while still guaranteeing
`1 recovery of any m-sparse vector for any dictionary with
δ2m < δ? This question is partially addressed by the following
result:

Theorem 1: For any ε > 0 there exists an integer m and
a dictionary Φ with a restricted isometry constant δ2m ≤
1/
√

2+ε for which `1 recovery fails on some m-sparse vector.
This and the other results presented in this paper are

derived in full in [7]. The main idea of the proof is to
first reduce the search for a failing dictionary to so-called
minimally redundant (i.e., Φ ∈ RM×N with M = N −1) unit
spectral norm dictionaries (i.e. ‖|Φ|‖ = 1). Such dictionaries
have one-dimensional kernels which simplifies the calculation
considerably (they are of course of little practical interest for
compressed sensing). Moreover their RIC, δk, is related to the
smallest singular value of any k-column submatrix, denoted
σk(Φ) by:

δk(Φ) ≤ 1− σ2
k(Φ)

1 + σ2
k(Φ)

(7)

Through (7) Theorem 1 can be seen as a special case of
the following theorem concerning general `p-minimization for
p ≤ 1:
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Fig. 1. A summary of known results from [14] and [7] relating the restricted
isometry constant to `p recovery.

Theorem 2: Consider 0 < p ≤ 1 and let 0 < ηp < 1 be the
unique positive solution to η

2/p
p + 1 = 2

p (1− ηp).
• If Φ ∈ RM×N is a unit spectral norm dictionary and

2m ≤ M < N and

σ2
2m(Φ) > 1− 2

2− p
ηp (8)

then all m-sparse vectors can be uniquely recovered by
solving (2).

• For every ε > 0, there exist integers m ≥ 1, N ≥ 2m+1
and a minimally redundant row orthonormal dictionary
Φ ∈ R(N−1)×N with:

σ2
2m(Φ) ≥ 1− 2

2− p
ηp − ε (9)

for which there exists an m-sparse vector which cannot
be uniquely recovered by solving (2).

Whenever ηp is irrational the inequality in (8) can be replaced
with ≥ . Whenever ηp is rational, equality can be achieved
with ε = 0 in (9).

This identifies values of σ2m, and hence δ2m, for which
`p recovery can fail. The complete results for RIC recovery
conditions from [7] along with the result of [14] are sum-
marised in Figure 1. Although there is a gap between the
positive result of Foucart and Lai [14] for p = 1 and the
negative result presented here, it is not a large one. The plot
suggests that there might still be some benefit in using p ¿ 1
to improve sparse recovery. However, at this juncture it is
important to consider the practical aspects of `p minimization.
As noted earlier, (2) with p < 1 is a non-convex optimisation
problem. Furthermore it is easy to show that there can be many
local minima associated with incorect sparse recovery. Thus
even the potential improvements in using p ¿ 1 suggested by
Theorem 2 may not be realizable in practice.

This is an often missed point: an optimization algorithm
is not necessarily equivalent to the associated optimization



problem (an exception here is when the cost function is
guaranteed to have a unique minimum, as in the `1 case). We
therefore need to consider algorithm specific recovery results.
We do this next.

II. REWEIGHTED `1 IMPLEMENTATIONS FOR `p

OPTIMISATION

One approach to solving (2) for p < 1 is to attempt to solve
a sequence of reweighted `1 optimisation problems of the form
[12], [13], [5], [14]:

ŷ(n) = argmin
y

‖Wny‖1 s.t. Φy = Φy?, (10)

where the initial weight matrix is set to the identity, W1 = Id,
and then subsequently Wn is selected as a diagonal positive
definite weight matrix that is a function of the previous
solution vector, Wn = fn(y(n−1)). In order to consider
the widest possible set of reweighting schemes we define
the following reweighting that encompasses all ‘reasonable’
reweighting schemes.

Definition 1 (Admissible reweighting schemes): A
reweighting scheme is considered to be admissible if,
W1 = Id and if, for each n, there exists a wn

max < ∞
such that for all k, 0 ≤ Wn(k, k) ≤ wn

max and
Wn(k, k) = wn

max ⇐ ŷ
(n−1)
k = 0.

While it can be shown [7] that such reweighting strategies
cannot damage an already successful solution we also have
the following negative result.

Proposition 1 (Iteratively reweighted `1 performance):
Let Φ ∈ R(N−1)×N be a minimally redundant dictionary of
maximal rank N − 1. Let Ω be a support set for which `1

recovery fails. Then any iteratively reweighted `1 algorithm
with an admissible reweighting scheme will also fail for some
vector y with support Ω.

Proof: Let Φ ∈ R(N−1)×N be a minimally redundant
dictionary with maximal rank and let z ∈ N (Φ) be an
arbitrary generator of its null space. Consider any set Ω
for which `1 recovery can fail, i.e., ‖zΩ‖1 ≥ ‖zΩc‖1. Let
y? = zΩ. Because of the dimensionality of the null space,
any representation satisfying Φy = Φy? takes the form
y = zΩ − αz = (1− α)zΩ − αzΩc . For any weight

‖Wny‖1 = |1− α| · ‖WnzΩ‖1 + |α| · ‖WnzΩc‖1, α ∈ R
hence there are only two possible unique solutions to (10),
corresponding to α = 0 and α = 1. Since `1 fails to recover
y?, we have ŷ(1) = −zΩc , therefore Ω ⊂ Γ1 and W2(k, k) =
w2

max, k ∈ Ω. 1 It follows that

|〈W2z, sign(ŷ(1))〉| ≤ w2
max‖zΩc‖1

≤ w2
max‖zT ‖1

≤ ‖(W2z)Γ1‖1
and we obtain that ŷ(n) = −zΩc for all n.

1If the solution to (10) is not unique then all values of α between 0 and 1
result in valid solutions and the algorithm has no means for determining the
correct one. We therefore make the pessimistic assumption that the algorithm
will select the incorrect representation associated with α = 1.

This immediately leads to the following statement:
Theorem 3: For any ε > 0 there exists an integer m and

a dictionary Φ with a restricted isometry constant δ2m ≤
1/
√

2+ ε for which recovery using any iteratively reweighted
`1 algorithm fails on some m-sparse vector.

This is a somewhat surprising result since one would
suspect that the adaptivity built into the choice of the weight
should enable improved performance. However it does not
necessarily imply that the uniform performance of iterative
reweighted `1 techniques is no better than `1 alone. Instead the
result highlights the danger of characterising sparse recovery
uniformly only in terms of the RIP.

III. RIP REST IN PEACE?

RIP recovery conditions, be they for `1 or `p, come from a
worst case analysis with respect to several parameters: worst
case over all coefficients for a given sign pattern; worst case
over all sign patterns for a given support; worst case over all
supports of a given size; and worst case over all dictionaries
with a given RIC. Our results emphasize the pessimism of such
a worst case analysis. In the context of compressed sensing
[9], [3], there is also the desire to characterise the degree
of undersampling (M/N ) possible while still achieving exact
recovery. Here RIP has been used to show that certain random
matrices with high probability guarantee exact recovery with
an undersampling of the order (m/N) log(N/m). However
this result is indirect, firstly due to the worst case analysis
discussed above and then secondly through the application
of the concentration of measure [1]. A more direct approach
seems to provide a much clearer indication of the relationship
between undersampling and recovery [11]. Of course, deriving
expressions for such phase transitions when p 6= 1 is likely to
be a very challenging problem. Reducing p < 1 also introduces
other issues since the cost function is no longer convex. Thus
recovery results should necessarily be derived in an algorithm
dependent manner.

Using RIP to characterize matrices has been extremely
useful in understanding when `1 sparse recovery can be
achieved and indeed opened the door to the possibility of
compressed sensing. However to further explore the possi-
bilities of better recovery using `p minimisation techniques
we require new more refined tools. An obvious contender for
sharper techniques is to work directly with the null space
property, (1) and its relative the robust null space property
[8], particularly as these are both in a sense tight. For example
an interesting non-RIP based analysis of `1 sparse recovery is
presented in [18]. Like RIP analysis, this also presents a worst
case analysis but based around typical properties of the null
spaces of random matrices. Unlike RIP, such an analysis is
naturally invariant to the observation metric and so is more
in line with the minimum `p estimators which are what in
statistics are called equivariant estimators2.

2an equivariant estimator is one that is invariant to specific group actions
- in the case of compressed sensing this is the set of linear invertible
transformations of the observation space



Finally we note that sparse recovery in the presence of noise
and/or quantization errors, x = Φy + ε, is a different type
of problem, and one that is not metric invariant. As the RIP
clearly controls the forward and inverse Lipschitz constants
of the embedding of the m-sparse set [2] it will still play an
important role in the performance of sparse approximation in
the presence of noise. So perhaps we should not be ready to
bury RIP just yet.
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