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Abstract

In this paper we develop a randomized block-coordinate descent method for minimizing the
sum of a smooth and a simple nonsmooth block-separable convex function and prove that it
obtains an ǫ-accurate solution with probability at least 1 − ρ in at most O(n

ǫ
log 1

ρ
) iterations,

where n is the number of blocks. For strongly convex functions the method converges linearly.
This extends recent results of Nesterov [Efficiency of coordinate descent methods on huge-scale
optimization problems, CORE Discussion Paper #2010/2], which cover the smooth case, to
composite minimization, while at the same time improving the complexity by the factor of 4 and
removing ǫ from the logarithmic term. More importantly, in contrast with the aforementioned
work in which the author achieves the results by applying the method to a regularized version
of the objective function with an unknown scaling factor, we show that this is not necessary,
thus achieving true iteration complexity bounds. In the smooth case we also allow for arbitrary
probability vectors and non-Euclidean norms. Finally, we demonstrate numerically that the
algorithm is able to solve huge-scale ℓ1-regularized least squares and support vector machine
problems with a billion variables.

Keywords: Block coordinate descent, iteration complexity, composite minimization, coor-
dinate relaxation, alternating minimization, convex optimization, L1-regularization, large scale
support vector machines.

1 Introduction

The goal of this paper, in the broadest sense, is to develop efficient methods for solving structured
convex optimization problems with some or all of these (not necessarily distinct) properties:
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1. Size of Data. The size of the problem, measured as the dimension of the variable of interest,
is so large that the computation of a single function value or gradient is prohibitive. There
are several situations in which this is the case, let us mention two of them.

• Memory. If the dimension of the space of variables is larger than the available memory,
the task of forming a gradient or even of evaluating the function value may be impossible
to execute and hence the usual gradient methods will not work.

• Patience. Even if the memory does not preclude the possibility of taking a gradient step,
for large enough problems this step will take considerable time and, in some applications
such as image processing, users might prefer to see/have some intermediary results before
a single iteration is over.

2. Nature of Data. The nature and structure of data describing the problem may be an obstacle
in using current methods for various reasons, including the following.

• Completeness. If the data describing the problem is not immediately available in its
entirety, but instead arrives incomplete in pieces and blocks over time, with each block
“corresponding to” one variable, it may not be realistic (for various reasons such as
“memory” and “patience” described above) to wait for the entire data set to arrive before
the optimization process is started.

• Source. If the data is distributed on a network not all nodes of which are equally
responsive or functioning, it may be necessary to work with whatever data is available
at a given time.

It appears that a very reasonable approach to solving some problems characterized above is to
use (block) coordinate descent methods (CD). In the remainder of this section we mix arguments in
support of this claim with a brief review of the relevant literature and an outline of our contributions.

1.1 Block Coordinate Descent Methods

The basic algorithmic strategy of CD methods is known in the literature under various names such
as alternating minimization, coordinate relaxation, linear and non-linear Gauss-Seidel methods,
subspace correction and domain decomposition. As working with all the variables of an optimization
problem at each iteration may be inconvenient, difficult or impossible for any or all of the reasons
mentioned above, the variables are partitioned into manageable blocks, with each iteration focused
on updating a single block only, the remaining blocks being fixed. Both for their conceptual and
algorithmic simplicity, CD methods were among the first optimization approaches proposed and
studied in the literature (see [1] and the references therein; for a survey of block CD methods in
semidefinite programming we refer the reader to [24]). While they seem to have never belonged
to the mainstream focus of the optimization community, a renewed interest in CD methods was
sparked recently by their successful application in several areas—training support vector machines
in machine learning [5, 3, 17, 28, 29], optimization [9, 23, 21, 20, 31, 16, 13, 25], compressed sensing
[8], regression [27], protein loop closure [2] and truss topology design [15]—partly due to a change
in the size and nature of data described above.
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Order of coordinates. Efficiency of a CD method will necessarily depend on the balance between
time spent on choosing the block to be updated in the current iteration and the quality of this choice
in terms of function value decrease. One extreme possibility is a greedy strategy in which the block
with the largest descent or guaranteed descent is chosen. In our setup such a strategy is prohibitive
as i) it would require all data to be available and ii) the work involved would be excessive due to
the size of the problem. Even if one is able to compute all partial derivatives, it seems better to
then take a full gradient step instead of a coordinate one, and avoid throwing almost all of the
computed information away. On the other end of the spectrum are two very cheap strategies for
choosing the incumbent coordinate: cyclic and random. Surprisingly, it appears that complexity
analysis of a cyclic CD method in satisfying generality has not yet been done. The only attempt
known to us is the work of Saha and Tewari [16]; the authors consider the case of minimizing a
smooth convex function and proceed by establishing a sequence of comparison theorems between
the iterates of their method and the iterates of a simple gradient method. Their result requires an
isotonicity assumption. Note that a cyclic strategy assumes that the data describing the next block
is available when needed which may not always be realistic. The situation with a random strategy
seems better; here are some of the reasons:

(i) Recent efforts suggest that complexity results are perhaps more readily obtained for random-
ized methods and that randomization can actually improve the convergence rate [18, 6, 17].

(ii) Choosing all blocks with equal probabilities should, intuitively, lead to similar results as is the
case with a cyclic strategy. In fact, a randomized strategy is able to avoid worst-case order of
coordinates, and hence might be preferable.

(iii) Randomized choice seems more suitable in cases when not all data is available at all times.

(iv) One may study the possibility of choosing blocks with different probabilities (we do this in
Section 4). The goal of such a strategy may be either to improve the speed of the method (in
Section 6.1 we introduce a speedup heuristic based on adaptively changing the probabilities),
or a more realistic modeling of the availability frequencies of the data defining each block.

Step size. Once a coordinate (or a block of coordinates) is chosen to be updated in the current
iteration, partial derivative can be used to drive the steplength in the same way as it is done in the
usual gradient methods. As it is sometimes the case that the computation of a partial derivative is
much cheaper and less memory demanding than the computation of the entire gradient, CD methods
seem to be promising candidates for problems described above. It is important that line search, if
any is implemented, is very efficient. The entire data set is either huge or not available and hence
it is not reasonable to use function values at any point in the algorithm, including the line search.
Instead, cheap partial derivative and other information derived from the problem structure should
be used to drive such a method.

1.2 Problem Description and Our Contribution

The problem. In this paper we study the iteration complexity of simple randomized block coor-
dinate decent methods applied to the problem of minimizing a composite objective function, i.e., a
function formed as the sum of a smooth convex and a simple nonsmooth convex term:

min
x∈RN

F (x)
def
= f(x) + Ψ(x). (1)
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We assume that this problem has a minimum (F ∗ > −∞), f has (block) coordinate Lipschitz
gradient, and Ψ is a (block) separable proper closed convex extended real valued function (these
properties will be defined precisely in Section 2). Possible choices of Ψ include:

(i) Ψ ≡ 0. This covers the case of smooth minimization. Complexity results are given in [13].

(ii) Ψ is the indicator function of a block-separable convex set (such as a box). This choice models
problems with constraints on blocks of variables; iteration complexity results are given in [13].

(iii) Ψ(x) ≡ λ‖x‖1 for λ > 0. In this case we can decompose R
N onto N blocks. Increasing

λ encourages the solution of (1) to be sparser [26]. Applications abound in, for instance,
machine learning [3], statistics [19] and signal processing [8].

(iv) There are many more choices such as the elastic net [32], group lasso [30, 10, 14] and sparse
group lasso [4].

Iteration complexity results. Strohmer and Vershynin [18] have recently proposed a random-
ized Karczmarz method for solving overdetermined consistent systems of linear equations and proved
that the method enjoys global linear convergence whose rate can be expressed in terms of the condi-
tion number of the underlying matrix. The authors claim that for certain problems their approach
can be more efficient than the conjugate gradient method. Motivated by these results, Leventhal
and Lewis [6] studied the problem of solving a system of linear equations and inequalities and in the
process gave iteration complexity bounds for a randomized CD method applied to the problem of
minimizing a convex quadratic function. In their method the probability of choice of each coordinate
is proportional to the corresponding diagonal element of the underlying positive semidefinite matrix
defining the objective function. These diagonal elements can be interpreted as Lipschitz constants
of the derivative of a restriction of the quadratic objective onto one-dimensional lines parallel to the
coordinate axes. In the general (as opposed to quadratic) case considered in this paper (1), these
Lipschitz constants will play an important role as well. Lin et al. [3] derived iteration complex-
ity results for several smooth objective functions appearing in machine learning. Shalev-Schwarz
and Tewari [17] proposed a randomized coordinate descent method with uniform probabilities for
minimizing ℓ1-regularized smooth convex problems. They first transform the problem into a box
constrained smooth problem by doubling the dimension and then apply a coordinate gradient de-
scent method in which each coordinate is chosen with equal probability. Nesterov [13] has recently
analyzed randomized coordinate descent methods in the smooth unconstrained and box-constrained
setting, in effect extending and improving upon some of the results in [6, 3, 17] in several ways.

While the asymptotic convergence rates of some variants of CD methods are well understood
[9, 23, 21, 20, 31], iteration complexity results are very rare. To the best of our knowledge, ran-
domized CD algorithms for minimizing a composite function have been proposed and analyzed (in
the iteration complexity sense) in a few special cases only: a) the unconstrained convex quadratic
case [6], b) the smooth unconstrained (Ψ ≡ 0) and the smooth block-constrained case (Ψ is the
indicator function of a direct sum of boxes) [13] and c) the ℓ1-regularized case [17]. As the approach
in [17] is to rewrite the problem into a smooth box-constrained format first, the results of [13] can
be viewed as a (major) generalization and improvement of those in [17] (the results were obtained
independently).
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Contribution. In this paper we further improve upon and extend and simplify the iteration
complexity results of Nesterov [13], treating the problem of minimizing the sum of a smooth convex
and a simple nonsmooth convex block separable function (1). We focus exclusively on simple
(as opposed to accelerated) methods. The reason for this is that the per-iteration work of the
accelerated algorithm in [13] on huge scale instances of problems with sparse data (such as the
Google problem where sparsity corresponds to each website linking only to a few other websites
or the sparse problems we consider in Section 6) is excessive. In fact, even the author does not
recommend using the accelerated method for solving such problems; the simple methods seem to
be more efficient.

Each algorithm of this paper is supported by a high probability iteration complexity result. That
is, for any given confidence level 0 < ρ < 1 and error tolerance ǫ > 0, we give an explicit expression
for the number of iterations k which guarantee that the method produces a random iterate xk for
which

P(F (xk)− F ∗ ≤ ǫ) ≥ 1− ρ.

Table 1 summarizes the main complexity results of this paper. Algorithm 2—Uniform (block)
Coordinate Descent for Composite functions (UCDC)—is a method where at each iteration the
block of coordinates to be updated (out of a total of n ≤ N blocks) is chosen uniformly at random.
Algorithm 3—Randomized (block) Coordinate Descent for Smooth functions (RCDS)—is a method
where at each iteration block i ∈ {1, . . . , n} is chosen with probability pi. Both of these methods
are special cases of the generic Algorithm 1; Randomized (block) Coordinate Descent for Composite
functions (RCDC).

Algorithm Objective Complexity

Algorithm 2 (UCDC)
(Theorem 4)

convex
composite

2nmax{R2

L
(x0),F (x0)−F∗}

ǫ
(1 + log 1

ρ
)

2nR2

L
(x0)

ǫ
log

(

F (x0)−F∗

ǫρ

)

Algorithm 2 (UCDC)
(Theorem 7)

strongly convex
composite

max{ 4
µ
, µ

µ−1
}n log

(

F (x0)−F∗

ρǫ

)

Algorithm 3 (RCDS)
(Theorem 11)

convex
smooth

2R2

LP−1
(x0)

ǫ
(1 + log 1

ρ
)− 2

Algorithm 3 (RCDS)
(Theorem 12)

strongly convex
smooth

1
µ
log

(

f(x0)−f∗

ǫρ

)

Table 1: Summary of complexity results obtained in this paper.

The symbols P,L,R2
W (x0) and µ appearing in Table 1 will be defined precisely in further

sections. For now it suffices to say that L encodes the (block) coordinate Lipschitz constants
of the gradient of f , P encodes the probabilities {pi}, R

2
W (x0) is a measure of distance of the initial

iterate x0 from the set of minimizers of the problem (1) in a norm defined by W (see Section 2) and
µ is the strong convexity parameter of F (see Section 3.2). In the nonsmooth case µ depends on L
and the smooth case it depends both on L and P .

Let us now briefly outline the main similarities and differences between our results and those in
[13]. A more detailed and expanded discussion can be found in Section 5.
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1. Composite setting. We consider the composite setting (1), whereas [13] covers the uncon-
strained and constrained smooth setting only.

2. No need for regularization. Nesterov’s high probability results in the case of minimizing
a function which is not strongly convex are based on regularizing the objective to make it
strongly convex and then running the method on the regularized function. Our contribution
here is that we show that no regularization is needed by doing a more detailed analysis using
a thresholding argument (Theorem 1).

3. Better complexity. Our complexity results are better by the constant factor of 4. Also, we
have removed ǫ from under the logarithm.

4. General probabilities. Nesterov considers probabilities pi proportional to Lα
i , where α ≥ 0

is a parameter. High probability results are proved in [13] for α ∈ {0, 1} only. Our results in
the smooth case hold for an arbitrary probability vector p.

5. General norms. Nesterov’s expectation results (Theorems 1 and 2) are proved for general
norms. However, his high probability results are proved for Euclidean norms only. In our
approach all results hold for general norms.

6. Simplification. Our analysis is more compact.

In the numerical experiments section we focus on sparse ℓ1-regularized regression and support
vector machine problems. For these problems we introduce a powerful speedup heuristic based
on adaptively changing the probability vector throughout the iterations (Section 6.1; “speedup by
shrinking”).

Contents. This paper is organized as follows. We start in Section 2 by defining basic notation,
describing the block structure of the problem, stating assumptions and describing the generic ran-
domized block-coordinate descent algorithm (RCDC). In Section 3 we study the performance of a
uniform variant (UCDC) of RCDC as applied to a composite objective function and in Section 4
we analyze a smooth variant (RCDS) of RCDC; that is, we study the performance of RCDC on
a smooth objective function. In Section 5 we compare known complexity results for CD methods
with the ones established in this paper. Finally, in Section 6 we demonstrate the efficiency of the
method on ℓ1-regularized sparse regression and linear support vector machine problems.

2 Assumptions and the Algorithm

Block structure. We model the block structure of the problem by decomposing the space R
N

into n subspaces as follows. Let U ∈ R
N×N be a column permutation of the N × N identity

matrix and further let U = [U1, U2, . . . , Un] be a decomposition of U into n submatrices, with Ui

being of size N × Ni, where
∑

iNi = N . Clearly, any vector x ∈ R
N can be written uniquely as

x =
∑

i Uix
(i), where x(i) = UT

i x ∈ Ri ≡ R
Ni . Also note that

UT
i Uj =

{

Ni ×Ni identity matrix, if i = j,

Ni ×Nj zero matrix, otherwise.
(2)
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For simplicity we will write x = (x(1), . . . , x(n))T . We equip Ri with a pair of conjugate Euclidean
norms:

‖t‖(i) = 〈Bit, t〉
1/2, ‖t‖∗(i) = 〈B−1

i t, t〉1/2, t ∈ Ri, (3)

where Bi ∈ R
Ni×Ni is a positive definite matrix and 〈·, ·〉 is the standard Euclidean inner product.

Example 1. Let n = N , Ni = 1 for all i and U = [e1, e2, . . . , en] be the n × n identity matrix.
Then Ui = ei is the i-th unit vector and x(i) = eTi x ∈ Ri = R is the i-th coordinate of x. Also,
x =

∑

i eix
(i). If we let Bi = 1 for all i, then ‖t‖(i) = ‖t‖∗(i) = |t| for all t ∈ R.

Smoothness of f . We assume throughout the paper that the gradient of f is block coordinate-
wise Lipschitz, uniformly in x, with positive constants L1, . . . , Ln, i.e., that for all x ∈ R

N , t ∈ Ri

and i we have
‖∇if(x+ Uit)−∇if(x)‖

∗
(i) ≤ Li‖t‖(i), (4)

where
∇if(x)

def
= (∇f(x))(i) = UT

i ∇f(x) ∈ Ri. (5)

An important consequence of (4) is the following standard inequality [11]:

f(x+ Uit) ≤ f(x) + 〈∇if(x), t〉+
Li

2 ‖t‖
2
(i). (6)

Separability of Ψ. We assume that Ψ is block separable, i.e., that it can be decomposed as
follows:

Ψ(x) =

n
∑

i=1

Ψi(x
(i)), (7)

where the functions Ψi : Ri → R are convex and closed.

The algorithm. Notice that an upper bound on F (x + Uit), viewed as a function of t ∈ Ri, is
readily available:

F (x+ Uit)
(1)
= f(x+ Uit) + Ψ(x+ Uit)

(6)

≤ f(x) + Vi(x, t) + Ci(x), (8)

where
Vi(x, t)

def
= 〈∇if(x), t〉+

Li

2 ‖t‖
2
(i) +Ψi(x

(i) + t) (9)

and
Ci(x)

def
=

∑

j 6=i

Ψj(x
(j)). (10)

We are now ready to describe the generic method. Given iterate xk, Algorithm 1 picks block
ik = i ∈ {1, 2, . . . , n} with probability pi > 0 and then updates the i-th block of xk so as to
minimize (exactly) in t the upper bound (8) on F (xk+Uit). Note that in certain cases it is possible
to minimize F (xk + Uit) directly; perhaps in a closed form. This is the case, for example, when f
is a convex quadratic.

The iterates {xk} are random vectors and the values {F (xk)} are random variables. Clearly,
xk+1 depends only on xk. As our analysis will be based on the (expected) per-iteration decrease of
the objective function, the results will hold even if we replace Vi(xk, t) by F (xk+Uit) in Algorithm 1.
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Algorithm 1 RCDC(p, x0) (Randomized Coordinate Descent for Composite Functions)

for k = 0, 1, 2, . . . do
Choose ik = i ∈ {1, 2, . . . , n} with probability pi

T (i)(xk)
def
= argmin{Vi(xk, t) : t ∈ Ri}

xk+1 = xk + UiT
(i)(xk)

end for

Global structure. For fixed positive scalars w1, . . . , wn let W = Diag(w1, . . . , wn) and define a
pair of conjugate norms in R

N by

‖x‖W =

[

n
∑

i=1

wi‖x
(i)‖2(i)

]1/2

, (11)

‖y‖∗W = max
‖x‖W≤1

〈y, x〉 =

[

n
∑

i=1

w−1
i (‖y(i)‖∗(i))

2

]1/2

. (12)

In the the subsequent analysis we will use W = L (Section 3) and W = LP−1 (Section 4), where
L = Diag(L1, . . . , Ln) and P = Diag(p1, . . . , pn).

The set of optimal solutions of (1) is denoted by X∗ and x∗ is any element of that set. Define

RW (x) = max
y

max
x∗∈X∗

{‖y − x∗‖W : F (y) ≤ F (x)},

which is a measure of the size of the level set of F given by x. In most of the results in this paper
we will need to assume that RW (x0) is finite for the initial iterate x0 and W = L or W = LP−1.

A technical result. The next simple result is the main technical tool enabling us to simplify and
improve the corresponding analysis in [13]. It will be used with ξk = F (xk)− F ∗.

Theorem 1. Let ξ0 > 0 be a constant, 0 < ǫ < ξ0, and consider a nonnegative nonincreasing
sequence of (discrete) random variables {ξk}k≥0 with one of the following properties:

(i) E[ξk+1 | ξk] ≤ ξk −
ξ2
k

c , for all k, where c > 0 is a constant,

(ii) E[ξk+1 | ξk] ≤ (1− 1
c )ξk, for all k such that ξk ≥ ǫ, where c > 1 is a constant.

Choose confidence level ρ ∈ (0, 1). If property (i) holds and we choose ǫ < c and

K ≥ c
ǫ (1 + log 1

ρ) + 2− c
ξ0
, (13)

or if property (ii) holds, and we choose

K ≥ c log ξ0
ǫρ , (14)

then
P(ξK ≤ ǫ) ≥ 1− ρ. (15)
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Proof. Notice that the sequence {ξǫk}k≥0 defined by

ξǫk =

{

ξk if ξk ≥ ǫ,

0 otherwise,

satisfies

ξǫk ≤ ǫ ⇔ ξk ≤ ǫ, k ≥ 0. (16)

Therefore, by Markov inequality,

P(ξk > ǫ) = P(ξǫk > ǫ) ≤
E[ξǫ

k
]

ǫ ,

and hence it suffices to show that
θK ≤ ǫρ, (17)

where θk
def
= E[ξǫk]. If property (i) holds, then

E[ξǫk+1 | ξ
ǫ
k] ≤ ξǫk −

(ξǫ
k
)2

c , E[ξǫk+1 | ξ
ǫ
k] ≤ (1− ǫ

c)ξ
ǫ
k, k ≥ 0, (18)

and by taking expectations (using convexity of t 7→ t2 in the first case) we obtain

θk+1 ≤ θk −
θ2
k

c , k ≥ 0, (19)

θk+1 ≤ (1− ǫ
c)θk, k ≥ 0. (20)

Notice that (19) is better than (20) precisely when θk > ǫ. Since

1
θk+1

− 1
θk

=
θk−θk+1

θk+1θk
≥

θk−θk+1

θ2
k

(19)

≥ 1
c ,

we have 1
θk

≥ 1
θ0

+ k
c = 1

ξ0
+ k

c . Therefore, if we let k1 ≥ c
ǫ −

c
ξ0

, we obtain θk1 ≤ ǫ. Finally, letting

k2 ≥
c
ǫ log

1
ρ , we have

θK
(13)

≤ θk1+k2

(20)

≤ (1− ǫ
c)

k2θk1 ≤ ((1− ǫ
c)

1
ǫ )

c log
1
ρ ǫ ≤ (e−

1
c )

c log
1
ρ ǫ = ǫρ,

establishing (17). If property (ii) holds, then E[ξǫk+1 | ξ
ǫ
k] ≤ (1− 1

c )ξ
ǫ
k for all k, and hence

θK ≤ (1− 1
c )

Kθ0 = (1− 1
c )

Kξ0
(14)

≤ ((1− 1
c )

c)
log

ξ0
ǫρ ξ0 ≤ (e−1)

log
ξ0
ǫρ ξ0 = ǫρ,

again establishing (17).

Restarting. Note that similar, albeit slightly weaker, high probability results can be achieved by
restarting as follows. We run the random process {ξk} repeatedly r = ⌈log 1

ρ⌉ times, always starting

from ξ0, each time for the same number of iterations k1 for which P(ξk1 > ǫ) ≤ 1
e . It then follows

that the probability that all r values ξk1 will be larger than ǫ is at most (1e )
r ≤ ρ. Note that the

restarting technique demands that we perform r evaluations of the objective function; this is not
needed in the one-shot approach covered by the theorem.

9



It remains to estimate k1 in the two cases of Theorem 1. We argue that in case (i) we can choose
k1 = ⌈ c

ǫ/e −
c
ξ0
⌉. Indeed, using similar arguments as in Theorem 1 this leads to E[ξk1 ] ≤

ǫ
e , which

by Markov inequality implies that in a single run of the process we have

P(ξk1 > ǫ) ≤
E[ξk1 ]

ǫ ≤ ǫ/e
ǫ = 1

e .

Therefore,
K = ⌈ecǫ − c

ξ0
⌉⌈log 1

ρ⌉

iterations suffice in case (i). A similar restarting technique can be applied in case (ii).

Tightness. It can be shown on simple examples that the bounds in the above result are tight.

3 Coordinate Descent for Composite Functions

In this section we study the performance of Algorithm 1 in the special case when all probabilities
are chosen to be the same, i.e., pi =

1
n for all i. For easier future reference we set this method apart

and give it a name (Algorithm 2).

Algorithm 2 UCDC(x0) (Uniform Coordinate Descent for Composite Functions)

for k = 0, 1, 2, . . . do
Choose ik = i ∈ {1, 2, . . . , n} with probability 1

n

T (i)(xk) = argmin{Vi(xk, t) : t ∈ Ri}
xk+1 = xk + UiT

(i)(xk)
end for

The following function plays a central role in our analysis:

H(x, T )
def
= f(x) + 〈∇f(x), T 〉+ 1

2‖T‖
2
L +Ψ(x+ T ). (21)

Comparing (21) with (9) using (2), (5), (7) and (11) we get

H(x, T ) = f(x) +

n
∑

i=1

Vi(x, T
(i)). (22)

Therefore, the vector T (x) = (T (1)(x), . . . , T (n)(x)), with the components T (i)(x) defined in Algo-
rithm 1, is the minimizer of H(x, ·):

T (x) = arg min
T∈RN

H(x, T ). (23)

Let us start by establishing an auxiliary result which will be used repeatedly.

Lemma 2. Let {xk}, k ≥ 0, be the random iterates generated by UCDC(x0). Then

E[F (xk+1)− F ∗ | xk] ≤
1
n (H(xk, T (xk))− F ∗) + n−1

n (F (xk)− F ∗). (24)
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Proof.

E[F (xk+1) | xk] =

n
∑

i=1

1
nF (xk + UiT

(i)(xk))

(8)

≤ 1
n

n
∑

i=1

[f(xk) + Vi(xk, T
(i)(xk)) + Ci(xk)]

(22)
= 1

nH(xk, T (xk)) +
n−1
n f(xk) +

1
n

n
∑

i=1

Ci(xk)

(10)
= 1

nH(xk, T (xk)) +
n−1
n f(xk) +

1
n

n
∑

i=1

∑

j 6=i

Ψj(x
(j)
k )

= 1
nH(xk, T (xk)) +

n−1
n F (xk).

3.1 Convex Objective

In order for Lemma 2 to be useful, we need to estimate H(xk, T (xk))− F ∗ from above in terms of
F (xk)− F ∗.

Lemma 3. Fix x∗ ∈ X∗, x ∈ domΨ and let R = ‖x− x∗‖L. Then

H(x, T (x)) − F ∗ ≤

{

(

1− F (x)−F ∗

2R2

)

(F (x) − F ∗), if F (x)− F ∗ ≤ R2,

1
2R

2 < 1
2 (F (x)− F ∗), otherwise.

(25)

Proof.

H(x, T (x))
(23)
= min

T∈RN
H(x, T )

= min
y∈RN

H(x, y − x)

(21)

≤ min
y∈RN

f(x) + 〈∇f(x), y − x〉+Ψ(y) + 1
2‖y − x‖2L

≤ min
y∈RN

F (y) + 1
2‖y − x‖2L

≤ min
α∈[0,1]

F (αx∗ + (1− α)x) + α2

2 ‖x− x∗‖2L

≤ min
α∈[0,1]

F (x)− α(F (x) − F ∗) + α2

2 R2. (26)

Minimizing (26) in α gives α∗ = min
{

1, (F (x) − F ∗)/R2
}

; the result follows.

We are now ready to estimate the number of iterations needed to push the objective value within
ǫ of the optimal value with high probability. Note that since ρ appears under the logarithm and
hence it is easy to attain high confidence.

Theorem 4. Choose initial point x0 and target confidence 0 < ρ < 1. Further, let the target
accuracy ǫ > 0 and iteration counter k be chosen in any of the following two ways:

11



(i) ǫ < F (x0)− F ∗ and

k ≥
2nmax{R2

L
(x0),F (x0)−F ∗}
ǫ

(

1 + log 1
ρ

)

+ 2−
2nmax{R2

L
(x0),F (x0)−F ∗}

F (x0)−F ∗ , (27)

(ii) ǫ < min{R2
L(x0), F (x0)− F ∗} and

k ≥
2nR2

L(x0)
ǫ log F (x0)−F ∗

ǫρ . (28)

If xk is the random point generated by UCDC(x0) as applied to the convex function F , then

P(F (xk)− F ∗ ≤ ǫ) ≥ 1− ρ.

Proof. Since F (xk) ≤ F (x0) for all k, we have ‖xk − x∗‖L ≤ RL(x0) for all x∗ ∈ X∗. Lemma 2
together with Lemma 3 then imply that the following holds for all k:

E[F (xk+1)− F ∗ | xk] ≤ 1
n max

{

1− F (xk)−F ∗

2‖xk−x∗‖2
L

, 12

}

(F (xk)− F ∗) + n−1
n (F (xk)− F ∗)

= max
{

1− F (xk)−F ∗

2n‖xk−x∗‖2
L

, 1− 1
2n

}

(F (xk)− F ∗)

≤ max
{

1− F (xk)−F ∗

2nR2
L
(x0)

, 1− 1
2n

}

(F (xk)− F ∗). (29)

Let ξk = F (xk) − F ∗ and consider case (i). If we let c = 2nmax{R2
L(x0), F (x0) − F ∗}, then from

(29) we obtain

E[ξk+1 | ξk] ≤ (1− ξk
c )ξk = ξk −

ξ2
k

c , k ≥ 0.

Moreover, ǫ < ξ0 < c. The result then follows by applying Theorem 1. Consider now case (ii).

Letting c =
2nR2

L
(x0)

ǫ > 1, notice that if ξk ≥ ǫ, inequality (29) implies that

E[ξk+1 | ξk] ≤ max
{

1− ǫ
2nR2

L
(x0)

, 1− 1
2n

}

ξk = (1− 1
c )ξk.

Again, the result follows from Theorem 1.

3.2 Strongly Convex Objective

Assume that F is strongly convex with respect to some norm ‖ · ‖ with convexity parameter µ > 0;
that is,

F (x) ≥ F (y) + 〈F ′(y), x− y〉+ µ
2 ‖x− y‖2, x, y ∈ domF, (30)

where F ′(y) is any subgradient of F at y. Note that from the first order optimality conditions for
(1) we obtain 〈F ′(x∗), x− x∗〉 ≥ 0 for all x ∈ domF which, combining with (30) used with y = x∗,
yields the standard inequality

F (x)− F ∗ ≥ µ
2‖x− x∗‖2, x ∈ domF. (31)

The next lemma will be useful in proving linear convergence of the expected value of the objective
function to the minimum.

12



Lemma 5. If F is strongly convex with respect to ‖ · ‖L with convexity parameter µ > 0, then

H(x, T (x)) − F ∗ ≤ γµ(F (x)− F ∗), x ∈ domF, (32)

where

γµ =

{

1− µ
4 , if µ ≤ 2,

1
µ , otherwise.

(33)

Proof.

H(x, T (x))
(23)
= min

t∈RN
H(x, t)

= min
y∈RN

H(x, y − x)

≤ min
y∈RN

F (y) + 1
2‖y − x‖2L

≤ min
α∈[0,1]

F (αx∗ + (1− α)x) + α2

2 ‖x− x∗‖2L

≤ min
α∈[0,1]

F (x)− α(F (x) − F ∗) + α2

2 ‖x− x∗‖2L

(31)

≤ min
α∈[0,1]

F (x) + α
(

α
µ − 1

)

(F (x)− F ∗). (34)

The optimal α in (34) is α∗ = min
{

1, µ2
}

; the result follows.

We now show that the expected value of F (xk) converges to F ∗ linearly.

Theorem 6. Let F be strongly convex with respect to the norm ‖ · ‖L with convexity parameter
µ > 0. If xk is the random point generated UCDC(x0), then

E[F (xk)− F ∗] ≤
(

1−
1−γµ
n

)k
(F (x0)− F ∗), (35)

where γµ is defined by (33).

Proof. Follows from Lemma 2 and Lemma 5.

The following is an analogue of Theorem 4 in the case of a strongly convex objective. Note that
both the accuracy and confidence parameters appear under the logarithm.

Theorem 7. Let F be strongly convex with respect to ‖ · ‖L with convexity parameter µ > 0 and
choose accuracy level ǫ > 0, confidence level 0 < ρ < 1, and

k ≥ n
1−γµ

log
(

F (x0)−F ∗

ρǫ

)

, (36)

where γµ is given by (33). If xk is the random point generated by UCDC(x0), then

P(F (xk)− F ∗ ≤ ǫ) ≥ 1− ρ.

Proof. Using Markov inequality and Theorem 6, we obtain

P[F (xk)− F ∗ ≥ ǫ] ≤ 1
ǫE[F (xk)− F ∗]

(35)

≤ 1
ǫ

(

1−
1−γµ
n

)k
(F (x0)− F ∗)

(36)

≤ ρ.
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3.3 A Regularization Technique

In this part we will investigate an alternative approach to establishing an iteration complexity result
in the case of an objective function that is not strongly convex. The strategy is very simple. We first
regularize the objective function by adding a small quadratic term to it, thus making it strongly
convex, and then argue that when Algorithm 2 is applied to the regularized objective, we can recover
an approximate solution of the original non-regularized problem.

The result obtained in this way is slightly different to the one covered by Theorem 4 in that
2nR2

L(x0) is replaced by 4n‖x0 − x∗‖2L. In some situations, ‖x0 − x∗‖2L can be significantly smaller
than R2

L(x0). However, let us remark that the regularizing term depends on quantities that are not
known in advance.

Fix x0 and ǫ > 0 and consider a regularized version of the objective function defined by

Fµ(x)
def
= F (x) + µ

2‖x− x0‖
2
L, µ = ǫ

‖x0−x∗‖2
L

. (37)

Clearly, Fµ is strongly convex with respect to the norm ‖ · ‖L with convexity parameter µ. In the
rest of this subsection we show that if we apply UCDC(x0) to Fµ with target accuracy ǫ

2 , then with
high probability we recover an ǫ-approximate solution of (1). We first need to establish that an
approximate minimizer of Fµ must be an approximate minimizer of F .

Lemma 8. If x′ satisfies Fµ(x
′) ≤ minx∈RN Fµ(x) +

ǫ
2 , then F (x′) ≤ F ∗ + ǫ.

Proof. Clearly,
F (x) ≤ Fµ(x), x ∈ R

N . (38)

If we let x∗µ
def
= argminx∈RN Fµ(x), then by assumption,

Fµ(x
′)− Fµ(x

∗
µ) ≤

ǫ
2 , (39)

and

Fµ(x
∗
µ) = min

x∈RN
F (x) + µ

2‖x− x0‖
2
L ≤ F (x∗) + µ

2‖x
∗ − x0‖

2
L

(37)

≤ F (x∗) + ǫ
2 . (40)

Putting all these observations together, we get

0 ≤ F (x′)− F (x∗)
(38)

≤ Fµ(x
′)− F (x∗)

(39)

≤ Fµ(x
∗
µ) +

ǫ
2 − F (x∗)

(40)

≤ ǫ.

The following theorem is an analogue of Theorem 4.

Theorem 9. Choose initial point x0, target accuracy

0 < ǫ ≤ 2‖x0 − x∗‖2L, (41)

target confidence level 0 < ρ < 1, and

k ≥
4n‖x0−x∗‖2L

ǫ log
(

2(F (x0)−F ∗)
ρǫ

)

. (42)

If xk is the random point generated by UCDC(x0) as applied to Fµ, then

P(F (xk)− F ∗ ≤ ǫ) ≥ 1− ρ.

14



Proof. Let us apply Theorem 7 to the problem of minimizing Fµ, composed as f+Ψµ, with Ψµ(x) =
Ψ(x) + µ

2 ‖x− x0‖
2
L. Note that

Fµ(x0)− Fµ(x
∗
µ)

(37)
= F (x0)− Fµ(x

∗
µ)

(38)

≤ F (x0)− F (x∗µ) ≤ F (x0)− F ∗, (43)

and
n

1−γµ

(33),(37),(41)
=

4n‖x0−x∗‖2
L

ǫ . (44)

Comparing (36) and (42) in view of (43) and (44), Theorem 7 implies that

P(Fµ(xk)− Fµ(x
∗
µ) ≤

ǫ
2) ≥ 1− ρ.

It now suffices to apply Lemma 8.

4 Coordinate Descent for Smooth Functions

In this section we give a much simplified and improved treatment of the smooth case (Ψ ≡ 0) as
compared to the analysis in Sections 2 and 3 of [13].

As alluded to in the above, we will develop the analysis in the smooth case for arbitrary, possibly
non-Euclidean, norms ‖ · ‖(i), i = 1, 2, . . . , n. Let ‖ · ‖ be an arbitrary norm in R

l. Then its dual is
defined in the usual way:

‖s‖∗ = max
‖t‖=1

〈s, t〉.

The following (Lemma 10) is a simple result which is used in [13] without being fully articulated
nor proved as it constitutes a straightforward extension of a fact that is trivial in the Euclidean
setting to the case of general norms. Since we think it is perhaps not standard, we believe it deserves
to be spelled out explicitly. The lemma has the following use. The main problem which needs to be
solved at each iteration of Algorithm 1 in the smooth case is of the form (45), with s = − 1

Li
∇if(xk)

and ‖ · ‖ = ‖ · ‖(i). Since ‖ · ‖ is non-Euclidean, we cannot write down the solution of (45) in a
closed form a-priori, for all norms. Nevertheless, we can say something about the solution, which
turns out to be enough for our subsequent analysis.

Lemma 10. If by s# we denote an optimal solution of the problem

min
t

{

u(s)
def
= −〈s, t〉+ 1

2‖t‖
2
}

, (45)

then
u(s#) = −1

2 (‖s‖
∗)2 , ‖s#‖ = ‖s‖∗, (αs)# = α(s#), α ∈ R. (46)

Proof. For α = 0 the last statement is trivial. If we fix α 6= 0, then clearly

u((αs)#) = min
‖t‖=1

min
β

{−〈αs, βt〉 + 1
2‖βt‖

2}.

For fixed t the solution of the inner problem is β = 〈αs, t〉, whence

u((αs)#) = min
‖t‖=1

−1
2〈αs, t〉

2 = −1
2α

2

(

max
‖t‖=1

〈s, t〉

)2

= −1
2(‖αs‖

∗)2, (47)
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proving the first claim. Next, note that optimal t = t∗ in (47) maximizes 〈s, t〉 over ‖t‖ = 1 and
hence 〈s, t∗〉 = ‖s‖∗, which implies that

‖(αs)#‖ = |β∗| = |〈αs, t∗〉| = |α||〈s, t∗〉| = |α|‖s‖∗ = ‖αs‖∗,

giving the second claim. Finally, since t∗ depends on s only, we have (αs)# = β∗t∗ = 〈αs, t∗〉t∗ and,
in particular, s# = 〈s, t∗〉t∗. Therefore, (αs)# = α(s#).

We can use Lemma 10 to rewrite the main step of Algorithm 1 in the smooth case into the more
explicit form,

T (i)(x) = arg min
t∈Ri

Vi(x, t)
(9)
= arg min

t∈Ri

〈∇if(x), t〉+
Li

2 ‖t‖
2
(i)

(45)
=

(

−∇if(x)
Li

)# (46)
= − 1

Li
(∇if(x))

#,

leading to Algorithm 3.

Algorithm 3 RCDS(p, x0) (Randomized Coordinate Descent for Smooth Functions)

for k = 0, 1, 2, . . . do
Choose ik = i ∈ {1, 2, . . . , n} with probability pi
xk+1 = xk −

1
Li
Ui(∇if(xk))

#

end for

The main utility of Lemma 10 for the purpose of the subsequent complexity analysis comes from
the fact that it enables us to give an explicit bound on the decrease in the objective function during
one iteration of the method in the same form as in the Euclidean case:

f(x)− f(x+ UiT
(i)(x))

(6)

≥ −[〈∇if(x), T
(i)(x)〉 + Li

2 ‖T
(i)(x)‖2(i)]

= −Liu((−
∇if(x)

Li
)#) (48)

(46)
= Li

2 (‖ −
∇if(x)

Li
‖∗(i))

2 = 1
2Li

(‖∇if(x)‖
∗
(i))

2.

4.1 Convex Objective

We are now ready to state the main result of this section.

Theorem 11. Choose initial point x0, target accuracy 0 < ǫ < min{f(x0)−f∗, 2R2
LP−1(x0)}, target

confidence 0 < ρ < 1 and

k ≥
2R2

LP−1 (x0)

ǫ

(

1 + log 1
ρ

)

+ 2−
2R2

LP−1 (x0)

f(x0)−f∗ , (49)

or

k ≥
2R2

LP−1 (x0)

ǫ

(

1 + log 1
ρ

)

− 2. (50)

If xk is the random point generated by RCDS(p, x0) as applied to convex f , then

P(f(xk)− f∗ ≤ ǫ) ≥ 1− ρ.
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Proof. Let us first estimate the expected decrease of the objective function during one iteration of
the method:

f(xk)−E[f(xk+1) | xk] =
n
∑

i=1

pi[f(xk)− f(xk + UiT
(i)(xk))]

(48)

≥ 1
2

n
∑

i=1

pi
1
Li
(‖∇if(xk)‖

∗
(i))

2 = 1
2(‖∇f(xk)‖

∗
W )2,

where W = LP−1. Since f(xk) ≤ f(x0) for all k and because f is convex, we get f(xk) − f∗ ≤
maxx∗∈X∗〈∇f(xk), xk − x∗〉 ≤ ‖∇f(xk)‖

∗
WRW (x0), whence

f(xk)−E[f(xk+1) | xk] ≥
1
2

(

f(xk)−f∗

RW (x0)

)2
.

By rearranging the terms we obtain

E[f(xk+1)− f∗ | xk] ≤ f(xk)− f∗ − (f(xk)−f∗)2

2R2
W

(x0)
.

If we now use Theorem 1 with ξk = f(xk)− f∗ and c = 2R2
W (x0), we obtain the result for k given

by (49). We now claim that 2− c
ξ0

≤ −2, from which it follows that the result holds for k given by
(50). Indeed, first notice that this inequality is equivalent to

f(x0)− f∗ ≤ 1
2R

2
W (x0). (51)

Now, a straightforward extension of Lemma 2 in [13] to general weights states that ∇f is Lipschitz
with respect to the norm ‖ · ‖V with the constant tr(LV −1). This, in turn, implies the inequality

f(x)− f∗ ≤ 1
2 tr(LV

−1)‖x− x∗‖2V ,

from which (51) follows by setting V = W and x = x0.

4.2 Strongly Convex Objective

Assume now that f is strongly convex with respect to the norm ‖ · ‖LP−1 (see definition (30)) with
convexity parameter µ > 0. Using (30) with x = x∗ and y = xk, we obtain

f∗ − f(xk) ≥ 〈∇f(xk), h〉+
µ
2 ‖h‖LP−1 = µ

(

〈 1µ∇f(xk), h〉 +
1
2‖h‖LP−1

)

,

where h = x∗ − xk. Applying Lemma 10 to estimate the right hand side of the above inequality
from below we obtain

f∗ − f(xk) ≥ − 1
2µ(‖∇f(xk)‖

∗
LP−1)

2. (52)

Let us now write down an efficiency estimate for the case of a strongly convex objective.

Theorem 12. Choose initial point x0, target accuracy 0 < ǫ < f(x0) − f∗, target confidence
0 < ρ < 1 and

k ≥ 1
µ log f(x0)−f∗

ǫρ . (53)

If xk is the random point generated by RCDS(p, x0) as applied to f , then

P(f(xk)− f∗ ≤ ǫ) ≥ 1− ρ.
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Proof. Let us first estimate the expected decrease of the objective function during one iteration of
the method:

f(xk)−E[f(xk+1) | xk] =

n
∑

i=1

pi[f(xk)− f(xk + UiT
(i)(xk))]

(48)

≥ 1
2

n
∑

i=1

pi
1
Li
(‖∇if(xk)‖

∗
(i))

2

= 1
2 (‖∇f(xk)‖

∗
LP−1)

2

(52)

≥ µ(f(xk)− f∗).

After rearranging the terms we obtain E[f(xk+1)− f∗ | xk] ≤ (1− µ)E[f(xk)− f∗]. If we now use
part (ii) of Theorem 1 with ξk = f(xk)− f∗ and c = 1

µ , we obtain the result.

5 Comparison of CD Methods with Complexity Guarantees

In this section we compare the results obtained in this paper with existing CD methods endowed
with iteration complexity bounds.

5.1 Smooth case (Ψ = 0)

In Table 2 we look at the results for unconstrained smooth minimization of Nesterov [13] and
contrast these with our approach. For brevity we only include results for the non-strongly convex
case.

Algorithm Ψ pi Norms Complexity Objective

Nesterov [13]
(Theorem 4)

0 Li∑
i
Li

Euclidean (2n+
8

Li∑
i
Li

R2

I
(x0)

ǫ
) log 4(f(x0)−f∗)

ǫρ
f(x) +

ǫ‖x−x0‖
2

I

8R2

I
(x0)

Nesterov [13]
(Theorem 3)

0 1
n

Euclidean
8nR2

L
(x0)

ǫ
log 4(f(x0)−f∗)

ǫρ
f(x) +

ǫ‖x−x0‖
2

L

8R2

L
(x0)

Algorithm 3
(Theorem 11)

0 > 0 general
2R2

LP−1
(x0)

ǫ
(1 + log 1

ρ
)− 2 f(x)

Algorithm 2
(Theorem 4)

separable 1
n

Euclidean

2nmax{R2

L
(x0),F (x0)−F∗}

ǫ
(1 + log 1

ρ
)

2nR2

L
(x0)

ǫ
log F (x0)−F∗

ǫρ

F (x)

Table 2: Comparison of our results to the results in [13] in the non-strongly convex case. The
complexity is for achieving P(F (xk)− F ∗ ≤ ǫ) ≥ 1− ρ.

We will now comment on the contents of Table 2 in detail.

• Uniform probabilities. Note that in the uniform case (pi =
1
n for all i) we have

R2
LP−1(x0) = nR2

L(x0),
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and hence the leading term (ignoring the logarithmic factor) in the complexity estimate of
Theorem 11 (line 3 of Table 2) coincides with the leading term in the complexity estimate of
Theorem 4 (line 4 of Table 2; the second result): in both cases it is

2nR2
L(x0)
ǫ .

Note that the leading term of the complexity estimate given in Theorem 3 of [13] (line 2 of
Table 2), which covers the uniform case, is worse by a factor of 4.

• Probabilities proportional to Lipschitz constants. If we set pi = Li/S for all i, where
S =

∑

i Li, then
R2

LP−1(x0) = SR2
I(x0).

In this case Theorem 4 in [13] (line 1 of Table 2) gives the complexity bound 2[n +
4SR2

I
(x0)

ǫ ]

(ignoring the logarithmic factor), whereas we obtain the bound
2SR2

I
(x0)

ǫ (line 3 of Table 2), an
improvement by a factor of 4. Note that there is a further additive decrease by the constant

2n (and the additional constant
2R2

LP−1 (x0)

f(x0)−f∗ − 2 if we look at the sharper bound (49)).

• General probabilities. Note that unlike the results in [13], which cover the choice of two
probability vectors only (lines 1 and 2 of Table 2)—uniform and proportional to Li—our result
(line 3 of Table 2) covers the case of arbitrary probability vector p. This opens the possibility
for fine-tuning the choice of p, in certain situations, so as to minimize R2

LP−1(x0).

• Logarithmic factor. Note that in our results we have managed to push ǫ out of the logarithm.

• Norms. Our results hold for general norms.

• No need for regularization. Our results hold for applying the algorithms to F directly;
i.e., there is no need to first regularize the function by adding a small quadratic term to it
(in a similar fashion as we have done it in Section 3.3). This is an essential feature as the
regularization constants are not known and hence the complexity results obtained that way
are not true complexity results.

5.2 Nonsmooth case (Ψ 6= 0)

In Table 3 we summarize the main characteristics of known complexity results for coordinate (or
block coordinate) descent methods for minimizing composite functions.

Note that the methods of Saha & Tewari and Schwarz & Tewari cover the ℓ1 regularized case
only, whereas the other methods cover the general block-separable case. However, while the greedy
approach of Yun & Tseng requires per-iteration work which grows with increasing problem dimen-
sion, our randomized strategy can be implemented cheaply. This gives an important advantage to
randomized methods for problems of large enough size.

The methods of Yun & Tseng and Saha & Tewari use one Lipschitz constant only, the Lipschitz
constant L(∇f) of the gradient of f . Note that if n is large, this constant is typically much larger
than the (block) coordinate constants Li. Schwarz & Tewari use coordinate Lipschitz constants,
but assume that all of them are the same. This is suboptimal as in many applications the constants
{Li} will have a large variation and hence if one chooses β = maxi Li for the common Lipschitz
constant, steplengths will necessarily be small (see Figure 2 in Section 6).
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Algorithm
Lipschitz

constant(s)
Ψ block

Choice of
coordinate

Work per
1 iteration

Yun & Tseng
[22]

L(∇f) separable Yes greedy expensive

Saha & Tewari
[16]

L(∇f) ‖ · ‖1 No cyclic cheap

Shwartz & Tewari
[17]

β = maxi Li ‖ · ‖1 No 1
n

cheap

This paper
(Algorithm 2)

Li separable Yes 1
n

cheap

Table 3: Comparison of CD approaches for minimizing composite functions (for which iteration
complexity results are provided).

Let us now compare the impact of the Lipschitz constants on the complexity estimates. For
simplicity assume N = n and let u = x∗ − x0. The estimates are listed in Table 4; it is clear from
the last column that the the approach with individual constants Li for each coordinate gives the
best complexity.

Algorithm complexity complexity (expanded)

Yun & Tseng
[22]

O(
nL(∇f)‖x∗−x0‖

2

2

ǫ
) O(n

ǫ

∑

i
L(∇f)(u(i))2)

Saha & Tewari
[16]

O(
nL(∇f)‖x∗−x0‖

2

2

ǫ
) O(n

ǫ

∑

i
L(∇f)(u(i))2)

Shwartz & Tewari
[17]

O(
nβ‖x∗−x0‖

2

2

ǫ
) O(n

ǫ

∑

i
(maxi Li)(u

(i))2)

This paper
(Algorithm 2)

O(
n‖x∗−x0‖

2

L

ǫ
) O(n

ǫ

∑

i
Li(u

(i))2)

Table 4: Comparison of iteration complexities of the methods listed in Table 3. The complexity in
the case of the randomized methods gives iteration counter k for which E(F (xk) ≤ ǫ)

6 Numerical Experiments

In this section we study the numerical behavior of RCDC on synthetic and real problem instances
of two problem classes: Sparse Regression / Lasso (Section 6.1) [19] and Linear Support Vector
Machines (Section 6.2). Due to space limitations we will devote a separate report to the study of
the (Sparse) Group Lasso problem.
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As an important concern in Section 6.1 is to demonstrate that our methods scale well with size,
all experiments were run on a PC with 480GB RAM. All algorithms were written in C.

6.1 Sparse Regression / Lasso

Consider the problem
min
x∈Rn

1
2‖Ax− b‖22 + λ‖x‖1, (54)

where A = [a1, . . . , an] ∈ R
m×n, b ∈ R

m, and λ ≥ 0. The parameter λ is used to induce sparsity in
the resulting solution. Note that (54) is of the form (1), with f(x) = 1

2‖Ax−b‖22 and Ψ(x) = λ‖x‖1.
Moreover, if we let N = n and Ui = ei for all i, then the Lipschitz constants Li can be computed
explicitly:

Li = ‖ai‖
2
2.

Computation of t = T (i)(x) reduces to the “soft-thresholding” operator [28]. In some of the exper-
iments in this section we will allow the probability vector p to change throughout the iterations
even though we do not give a theoretical justification for this. With this modification, a direct
specialization of RCDC to (54) takes the form of Algorithm 4. If uniform probabilities are used
throughout, we refer to the method as UCDC.

Algorithm 4 RCDC for Sparse Regression

Choose x0 ∈ R
n and set g0 = Ax0 − b = −b

for k = 0, 1, 2, . . . do

Choose ik = i ∈ {1, 2, . . . , n} with probability p
(i)
k

α = aTi gk

t =















− α+λ
‖ai‖22

, if x
(i)
k − α+λ

‖ai‖22
> 0

− α−λ
‖ai‖22

, if x
(i)
k − α−λ

‖ai‖22
< 0

−x
(i)
k , otherwise

xk+1 = xk + tei, gk+1 = gk + tai
end for

Instance generator

In order to be able to test Algorithm 4 under controlled conditions we use a (variant of the) instance
generator proposed in Section 6 of [12] (the generator was presented for λ = 1 but can be easily
extended to any λ > 0). In it, one chooses the sparsity level of A and the optimal solution x∗; after
that A, b, x∗ and F ∗ = F (x∗) are generated. For details we refer the reader to the aforementioned
paper.

In what follows we use the notation ‖A‖0 and ‖x‖0 to denote the number of nonzero elements
of matrix A and of vector x, respectively.

Speed versus sparsity

In the first experiment we investigate, on problems of size m = 107 and n = 106, the dependence
of the time it takes for UCDC to complete a block of n iterations (the measurements were done by
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running the method for 10×n iterations and then dividing by 10) on the sparsity levels of A and x∗.
Looking at Table 5, we see that the speed of UCDC depends roughly linearly on the sparsity level
of A (and does not depend on ‖x∗‖0 at all). Indeed, as ‖A‖0 increases from 107 through 108 to 109,
the time it takes for the method to complete n iterations increases from about 0.9s through 4–6s to
about 46 seconds. This is to be expected since the amount of work per iteration of the method in
which coordinate i is chosen is proportional to ‖ai‖0 (computation of α, ‖ai‖

2
2 and gk+1).

‖x∗‖0 ‖A‖0 = 107 ‖A‖0 = 108 ‖A‖0 = 109

16× 102 0.89 5.89 46.23
16× 103 0.85 5.83 46.07
16× 104 0.86 4.28 46.93

Table 5: The time it takes for UCDC to complete a block of n iterations increases linearly with
‖A‖0 and does not depend on ‖x∗‖0.

Efficiency on huge-scale problems

Tables 6 and 7 present typical results of the performance of UCDC, started from x0 = 0, on synthetic
sparse regression instances of big/huge size. The instance in the first table is of size m = 2 × 107

and n = 106, with A having 5× 107 nonzeros and the support of x∗ being of size 160, 000.

A ∈ R
2·107×106 , ‖A‖0 = 5 · 107

k/n F (xk)−F∗

F (x0)−F∗
‖xk‖0 time [sec]

0.0000 100 0 0.0
2.1180 10−1 880,056 5.6
4.6350 10−2 990,166 12.3
5.6250 10−3 996,121 15.1
7.9310 10−4 998,981 20.7

10.3920 10−5 997,394 27.4
12.1100 10−6 993,569 32.3
14.4640 10−7 977,260 38.3
18.0720 10−8 847,156 48.1
19.5190 10−9 701,449 51.7
21.4650 10−10 413,163 56.4
23.9150 10−11 210,624 63.1
25.1750 10−12 179,355 66.6
27.3820 10−13 163,048 72.4
29.9610 10−14 160,311 79.3

k/n F (xk)−F∗

F (x0)−F∗
‖xk‖0 time [sec]

30.9440 10−15 160,139 82.0
32.7480 10−16 160,021 86.6
34.1740 10−17 160,003 90.1
35.2550 10−18 160,000 93.0
36.5480 10−19 160,000 96.6
38.5210 10−20 160,000 101.4
39.9860 10−21 160,000 105.3
40.9770 10−22 160,000 108.1
43.1390 10−23 160,000 113.7
47.2780 10−24 160,000 124.8
47.2790 10−25 160,000 124.8
47.9580 10−26 160,000 126.4
49.5840 10−27 160,000 130.3
52.3130 10−28 160,000 136.8
53.4310 10−29 160,000 139.4

Table 6: Performance of UCDC on a sparse regression instance with a million variables.

In both tables the first column corresponds to the “full-pass” iteration counter k/n. That is,
after k = n coordinate iterations the value of this counter is 1, reflecting a single “pass” through
the coordinates. The remaining columns correspond to, respectively, the size of the current residual
F (xk)−F ∗ relative to the initial residual F (x0)−F ∗, size ‖xk‖0 of the support of the current iterate
xk, and time (in seconds). A row is added whenever the residual initial residual is decreased by an
additional factor of 10.

Let us first look at the smaller of the two problems (Table 6). After 35×n coordinate iterations,
UCDC decreases the initial residual by a factor of 1018, and this takes about a minute and a half.
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A ∈ R
1010×109 , ‖A‖0 = 2× 1010

k/n F (xk)−F∗

F (x0)−F∗
‖xk‖0 time [hours]

0 100 0 0.00
1 10−1 14,923,993 1.43
3 10−2 22,688,665 4.25

16 10−3 24,090,068 22.65

Table 7: Performance of UCDC on a sparse regression instance with a billion variables and 20 billion
nonzeros in matrix A.

Note that the number of nonzeros of xk has stabilized at this point at 160, 000, the support size
of the optima solution. The method has managed to identify the support. After 139.4 seconds the
residual is decreased by a factor of 1029. This surprising convergence speed can in part be explained
by the fact that for random instances with m > n, f will typically be strongly convex, in which
case UCDC converges linearly (Theorem 7).

UCDC has a very similar behavior on the larger problem as well (Table 7). Note that A has 20
billion nonzeros. In 1×n iterations the initial residual is decreased by a factor of 10, and this takes
less than an hour and a half. After less than a day, the residual is decreased by a factor of 1000.
Note that it is very unusual for convex optimization methods equipped with iteration complexity
guarantees to be able to solve problems of these sizes.

Performance on fat matrices (m < n)

When m < n, then f is not strongly convex and UCDC has the complexity O(nǫ log
1
ρ) (Theorem 4).

In Table 8 we illustrate the behavior of the method on such an instance; we have chosen m = 104,
n = 105, ‖A‖0 = 107 and ‖x∗‖0 = 1, 600. Note that after the first 5, 010 × n iterations UCDC
decreases the residual by a factor of 10+ only; this takes less than 19 minutes. However, the
decrease from 102 to 10−3 is done in 15×n iterations and takes 3 seconds only, suggesting very fast
local convergence.

k/n F (xk)− F ∗ ‖xk‖0 time [s]

1 > 107 63,106 0.21
5, 010 < 106 33,182 1,092.59

18, 286 < 105 17,073 3,811.67
21, 092 < 104 15,077 4,341.52
21, 416 < 103 11,469 4,402.77
21, 454 < 102 5,316 4,410.09
21, 459 < 101 1,856 4,411.04
21, 462 < 100 1,609 4,411.63
21, 465 < 10−1 1,600 4,412.21
21, 468 < 10−2 1,600 4,412.79
21, 471 < 10−3 1,600 4,413.38

Table 8: UCDC needs many more iterations when m < n, but local convergence is still fast.
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Comparing different probability vectors

Nesterov [13] considers only probabilities proportional to a power of the Lipschitz constants:

pi =
Lα
i∑n

i=1 L
α
i
, 0 ≤ α ≤ 1. (55)

In Figure 1 we compare the behavior of RCDC, with the probability vector chosen according to the
power law (55), for three different values of α (0, 0.5 and 1). All variants of RCDC were compared
on a single instance with m = 1, 000, n = 2, 000 and ‖x∗‖0 = 300 (different instances produced by
the generator yield similar results) and with λ ∈ {0, 1}. The plot on the left corresponds to λ = 0,
the plot on the right to λ = 1.
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Figure 1: Development of F (xk) − F ∗ for sparse regression problem with λ = 0 (left) and λ = 1
(right).

Note that in both cases the choice α = 1 is the best. In other words, coordinates with large Li

have a tendency to decrease the objective function the most. However, looking at the λ = 0 case, we
see that the method with α = 1 stalls after about 20,000 iterations. The reason for this is that now
the coordinates with small Li should be chosen to further decrease the objective value. However,
they are chosen with very small probability and hence the slowdown. A solution to this could be to
start the method with α = 1 and then switch to α = 0 later on. On the problem with λ = 1 this
effect is less pronounced. This is to be expected as now the objective function is a combination of
f and Ψ, with Ψ exerting its influence and mitigating the effect of the Lipschitz constants.

Coordinate Descent vs. a Full-Gradient method

In Figure 1 we compare the performance of RCDC with the full gradient (FG) algorithm [12] (with
the Lipschitz constant LFG = λmax(A

TA) > maxi Li) for four different distributions of the Lipschitz
constants Li. Since the work performed during one iteration of FG is comparable with the work
performed by UCDC during n coordinate iterations, for FG we multiply the iteration count by n.
In all four tests we solve instances with A ∈ R

2,000×1,000.
In the 1-1 plot the Lipschitz constants Li were generated uniformly at random in the interval

(0, 1). We see that the RCDC variants with α = 0 and α = 0.2 exhibit virtually the same behavior,
whereas α = 1 and FG struggle finding a solution with error tolerance below 10−5 and 10−2,
respectively. The α = 1 method does start off a bit faster, but then stalls due to the fact that
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the coordinates with small Lipschitz constants are chosen with extremely small probabilities. For a
more accurate solution one needs to be updating these coordinates as well.

In order to zoom in on this phenomenon, in the 1-2 plot we construct an instance with an
extreme distribution of Lipschitz constants: 98% of the constants have the value 10−6, whereas the
remaining 2% have the value 103. Note that while the FG and α = 1 methods are able to quickly
decrease the objective function within 10−4 of the optimum, they get stuck afterwards since they
effectively never update the coordinates with Li = 10−6. On the other hand, the α = 0 method
starts off slowly, but does not stop and manages to solve the problem eventually, in about 2× 105

iterations.
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Figure 2: Comparison UCDC with different choices of α with a full-gradient method (which es-
sentially is UCDC with one component: n = 1) for four different distributions of the Lipschitz
constants Li.

In the plot in the 2-1 position (resp. 2-2 position) we choose 70% (resp. 50%) of the Lipschitz
constants Li to be 1, and the remaining 30% (resp. 50%) equal to 100. Again, the α = 0 and
α = 0.2 methods give the best long-term performance.

In summary, if fast convergence to a solution with a moderate accuracy us needed, then α = 1
is the best choice (and is always better than FG). If one desires a solution of higher accuracy, it is
recommended to switch to α = 0. In fact, it turns out that we can do much better than this using
a “shrinking” heuristic.
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Speedup by shrinking

It is well-known that increasing values of λ encourage increased sparsity in the solution of (54). In
the experimental setup of this section we observe that from certain iteration onwards, the sparsity
pattern of the iterates of RCDC is a very good predictor of the sparsity pattern of the optimal
solution x∗ the iterates converge to. More specifically, we often observe in numerical experiments
that for large enough k the following holds:

(x
(i)
k = 0) ⇒ (∀l ≥ k x

(i)
l = (x∗)(i) = 0). (56)

In words, for large enough k, zeros in xk typically stay zeros in all subsequent iterates1 and corre-
spond to zeros in x∗. Note that RCDC is not able to take advantage of this. Indeed, RCDC, as
presented in the theoretical sections of this paper, uses the fixed probability vector p to randomly
pick a single coordinate i to be updated in each iteration. Hence, eventually,

∑

i:x
(i)
k

=0
pi proportion

of time will be spent on vacuous updates.
Looking at the data in Table 6 one can see that after approximately 35 × n iterations, xk has

the same number of non-zeros as x∗ (160,000). What is not visible in the table is that, in fact,
the relation (56) holds for this instance much sooner. In Figure 3 we illustrate this phenomenon in
more detail on an instance with m = 500, n = 1, 000 and ‖x∗‖0 = 100.
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Figure 3: Development of non-zero elements in xk.

First, note that the number of nonzeros (solid blue line) in the current iterate, #{i : x
(i)
k 6= 0},

is first growing from zero (since we start with x0 = 0) to just below n in about 0.6× 104 iterations.
This value than starts to decrease starting from about k ≈ 15n and reaches the optimal number of
nonzeros at iteration k ≈ 30n and stays there afterwards. Note that the number of correct nonzeros,

cnk = #{i : x
(i)
k 6= 0 & (x∗)(i) 6= 0},

is increasing (for this particular instance) and reaches the optimal level ‖x∗‖0 very quickly (at
around k ≈ 3n). An alternative, and perhaps a more natural, way to look at the same thing is via
the number of incorrect zeros,

izk = #{i : x
(i)
k = 0 & (x∗)(i) 6= 0}.

1There are various theoretical results on the identification of active manifolds explaining numerical observations
of this type; see [7] and the references therein. See also [28].
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Indeed, we have cnk + izk = ‖x∗‖0. Note that for our problem izk ≈ 0 for k ≥ k0 ≈ 3n.
The above discussion suggests that an iterate-dependent policy for updating of the probability

vectors pk in Algorithm 4 might help to accelerate the method. Let us now introduce a simple
q-shrinking strategy for adaptively changing the probabilities as follows: at iteration k ≥ k0, where
k0 is large enough, set

p
(i)
k = p̂

(i)
k (q)

def
=

{

1−q
n , if x

(i)
k = 0,

1−q
n + q

‖xk‖0
, otherwise.

This is equivalent to choosing ik uniformly from the set {1, 2, . . . , n} with probability 1 − q and
uniformly from the support set of xk with probability q. Clearly, different variants of this can be
implemented, such as fixing a new probability vector for k ≥ k0 (as opposed to changing it for
every k) ; and some may be more effective and/or efficient than others in a particular context. In
Figure 4 we illustrate the effectiveness of q-shrinking on an instance of size m = 500, n = 1, 000 with
‖x∗‖0 = 50. We apply to this problem a modified version of RCDC started from the origin (x0 = 0)
in which uniform probabilities are used in iterations 0, . . . , k0 − 1, and q-shrinking is introduced as
of iteration k0:

p
(i)
k =

{

1
n , for k = 0, 1, . . . , k0 − 1,

p̂
(i)
k (q), for k ≥ k0.

We have used k0 = 5× n.
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Figure 4: Comparison of different shrinking strategies.

Notice that as the number of nonzero elements of xk decreases, the time savings from q-shrinking
grow. Indeed, 0.9-shrinking introduces a saving of nearly 70% when compared to 0-shrinking to
obtain xk satisfying F (xk)−F ∗ ≤ 10−14. We have repeated this experiment with two modifications:
a) a random point was used as the initial iterate (scaled so that ‖x0‖0 = n) and b) k0 = 0. The
corresponding plots are very similar to Figure 4 with the exception that the lines in the second plot
start from ‖x0‖0 = n.

Choice of the initial point

Let us now investigate the question of the choice of the initial iterate x0 for RCDC. Two choices
seem very natural: a) x0 = 0 (the minimizer of Ψ(x) = λ‖x‖1) and b) x0 = xLS (the minimizer of
f(x) = 1

2‖Ax − b‖22). Note that the computation of xLS may be as complex as the solution of the
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original problem. However, if available, xLS constitutes a reasonable alternative to 0: intuitively,
the former will be preferable to the latter whenever Ψ is dominated by f , i.e., when λ is small.

In Figure 5 we compare the performance of UCDC run on a single instance when started from
these two starting points (the solid line corresponds to x0 = 0 whereas the dashed line corresponds
to x0 = xLS). The same instance is used here as in the q-shrinking experiments and λ = 1. Starting
from xLS gives a 4× speedup for pushing residual F (xk)− F ∗ below 10−5.

0 1 2 3 4 5 6
x 10

4

10
−10

10
−5

10
0

10
5

k

F
(x

k)−
F

*

 

 
Started from 0
Started from x

LS

Figure 5: Starting from the least squares solution, if available, and if λ is small enough, can be
better than starting from the origin.

In Figure 6 we investigate the effect of starting UCDC from a point on the line segment between
xLS (dashed red line) and 0 (solid blue line). We generate 50 such points x0, uniformly at random
(thin green lines). The plot on the left corresponds to the choice λ = 0.01, the plot on the right to
λ = 1. Note that x∗ = xLS for λ = 0 and x∗ = 0 when λ → ∞.
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Figure 6: There does not seem to be any advantage in starting UCDC from a point on the line
segment between xLS and the origin as opposed to starting it from the better of two endpoints.

6.2 Linear Support Vector Machines

Consider the problem of training a linear classifier with training examples {(x1, y1), . . . , (xm, ym)},
where xi are the feature vectors and yi ∈ {−1,+1} the corresponding labels (classes). This problem
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is usually cast as an optimization problem of the form (1),

min
w∈Rn

F (w) = f(w) + Ψ(w), (57)

where

f(w) = γ

m
∑

i=1

L(w;xi, yi),

L is a nonnegative convex loss function and Ψ(·) = ‖ · ‖1 for L1-regularized and Ψ(·) = ‖ · ‖2 for
L2-regularized linear classifier. Some popular loss functions are listed in Table 9. For more details
we refer the reader to [28] and the references therein; for a survey of recent advances in large-scale
linear classification see [29].

L(w;xi, yi) name property

max{0, 1 − yjw
Txj} L1-SVM loss (L1-SVM) C0 continuous

max{0, 1 − yjw
Txj}

2 L2-SVM loss (L2-SVM) C1 continuous

log(1 + e−yjwTxj) logistic loss (LG) C2 continuous

Table 9: A list of a few popular loss functions.

Because our setup requires f to be at least C1 continuous, we will consider the L2-SVM and
LG loss functions only. In the experiments below we consider the L1 regularized setup.

A few implementation remarks

The Lipschitz constants and coordinate derivatives of f for the L2-SVM and LG loss functions are
listed in Table 10.

Loss function Li ∇if(w)

L2-SVM 2γ

m
∑

j=1

(yjx
(i)
j )2 −2γ ·

∑

j : −yjwTxj>−1

yjx
(i)
j (1− yjw

Txj)

LG γ
4

m
∑

j=1

(yjx
(i)
j )2 −γ ·

m
∑

j=1

yjx
(i)
j

e−yjwTxj

1 + e−yjwTxj

Table 10: Lipschitz constants and coordinate derivatives for SVM.

For an efficient implementation of UCDC we need to be able to cheaply update the partial
derivatives after each step of the method. If at step k coordinate i gets updated, via wk+1 = wk+tei,

and we let r
(j)
k

def
= −yjw

Txj for j = 1, . . . ,m, then

r
(j)
k+1 = r

(j)
k − tyjx

(i)
j , j = 1, . . . ,m. (58)

Let oi be the number of observations feature i appears in, i.e., oi = #{j : x
(i)
j 6= 0}. Then the

update (58), and consequently the update of the partial derivative (see Table 10), requires O(oi)
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operations. In particular, in feature-sparse problems where 1
n

∑n
i=1 oi ≪ m, an average iteration of

UCDC will be very cheap.

Small scale test

We perform only preliminary results on the dataset rcv1.binary2. This dataset has 47,236 features
and 20,242 training and 677,399 testing instances. We train the classifier on 90% of training instances
(18,217); the rest we used for cross-validation for the selection of the parameter γ. In Table 11 we
list cross-validation accuracy (CV-A) for various choices of γ and testing accuracy (TA) on 677,399
instances. The best constant γ is 1 for both loss functions in cross-validation.

Loss function γ CV-A TA γ CV-A TA

L2-SVM 0.0625 94.1% 93.2% 2 97.0% 95.6%
0.1250 95.5% 94.5% 4 97.0% 95.4%
0.2500 96.5% 95.4% 8 96.9% 95.1%
0.5000 97.0% 95.8% 16 96.7% 95.0%

1.0000 97.0% 95.8% 32 96.4% 94.9%

LG 0.5000 0.0% 0.0% 8 40.7% 37.0%
1.0000 96.4% 95.2% 16 37.7% 36.0%
2.0000 43.2% 39.4% 32 37.6% 33.4%
4.0000 39.3% 36.5% 64 36.9% 34.1%

Table 11: Cross validation accuracy (CV-A) and testing accuracy (TA) for various choices of γ.

In Figure 7 we present dependence of TA on the number of iterations we run UCDC for (we
measure this number in multiples of n). As you can observe, UCDC finds good solution after 10×n
iterations, which for this data means less then half a second. Let us remark that we did not include
bias term or any scaling of the data.

Large scale test

We have used the dataset kdd2010 (bridge to algebra)3, which has 29,890,095 features and 19,264,097
training and 748,401 testing instances. Training the classifier on the entire training set required
approximately 70 seconds in the case of L2-SVM loss and 112 seconds in the case of LG loss. We
have run UCDC for n iterations.
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