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Abstract:

Compressed sensing is an emerging signal acquisition
technique that enables signals to be sampled well below
the Nyquist rate, given a finite dimensional signal with a
sparse representation in some orthonormal basis. In fact,
sparsity in an orthonormal basis is only one possible sig-
nal model that allows for sampling strategies below the
Nyquist rate. We discuss some recent results for more
general signal models based on unions of subspaces that
allow us to consider more general structured representa-
tions. These include classical sparse signal models and
finite rate of innovation systems as special cases.

We consider the dimensionality conditions for two as-
pects of the compressed sensing inverse problem: the ex-
istence of one-to-one maps to lower dimensional observa-
tion spaces and the smoothness of the inverse map.

On the surface Lipschitz smoothness of the inverse map
appears to limit the applicability of compressed sensing to
infinite dimensional signal models. We therefore discuss
conditions where smooth inverse maps are possible even
in infinite dimensions. Finally we conclude by mention-
ing some recent work [14] which develops the these ideas
further allowing the theory to be extended beyond exact
representations to structured approximations.

1. Introduction

Since Nyquist and Shannon we are used to sampling con-
tinuous signals at a rate that is twice the bandwidth of the
signal. However recently, under the umbrella title of com-
pressed sensing, researchers have begun to explore how
and when signals can be recovered using much fewer sam-
ples, but relying on known signal structure. Importantly
the papers by Candes, Romberg and Tao [4], [5], [6] and
by Donoho [8] have shown that under certain conditions
on the signal sparsity and the sampling operator (which
are often satisfied by certain random matrices), finite di-
mensional signals can be stably reconstructed when the
number of observations is of the order of the signal spar-
sity and only logarithmically dependent on the ambient
space dimension. Furthermore the reconstruction can be
performed using practical polynomial time algorithms.

Here we discuss a generalization of the sparse signal
model that enables us to consider more structured signal
types. We are interested in when the signals can be sta-
bly reconstructed (or in some cases approximated). We

finish the paper by considering the implications of these
results for co-dimensional signal models and extending
from structured representations to structured approxima-
tion.

2. Signal models and problem statement

The problem can be formulated as follows. A continuous
or discrete signal f from some separable Hilbert space is
to be sampled. This is done by using M linear measure-
ments {({f,¢n)}n, where (-,-) is the inner product and
where {¢,,} is a set of vectors from the Hilbert space un-
der consideration. Through the choice of an appropriate
orthonormal basis, ¢ we can replace f by the vector x
such that f = SN | b2, Let & € RM*N be the sensing
matrix with entries (1;, ¢;). The observation can then be
written as

y = dx. (D

In compressed sensing it is paramount to consider signals
x that are highly structured and in the original papers, x
was assumed to be an exact k-sparse vector, i.e. a vector
with not more than k£ non-zero entries (we discuss a relax-
ation of this in section 6.). This naturally defines the sig-
nal model as a union of N-choose-k k-dimensional sub-
spaces, K.

A nice generalization of this model, introduced in [12], is
to consider the signal x to be an element from a union of
arbitrary subspaces A, defined formally as

L
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where the 2, are bases for linear subspaces. This gen-
eral signal model incorporates many previously consid-
ered compressed sensing settings, including:

e The exact k-sparse signal model, C

e Finite Rate of Innovation (FRI) [15] signal models, if
we allow an uncountable number of subspaces (e.g.
filtered streams of Dirac functions)

e signals that are k-sparse in a general, possibly redun-
dant dictionary

e cxact k-sparse signals whose non-zero elements form
a tree



e multi-dimensional signals that are k-sparse with
common support

Importantly this model allows us to incorporate additional
structure which can in turn be advantageous by for exam-
ple reducing signal complexity (as in the tree-constrained
sparse model).

The aim of compressed sensing is to select a linear sam-
pling operator, ®, such that there exists a unique inverse
map @[~ : ®(K) — K. Moreover, for stability, we gen-
erally desire ®(K) to be a bi-Lipschitz embedding of k.
In standard compressed sensing this stability is captured
by the restricted isometry property [1].

When considering the union of subspaces model we can
similarly look for a & with a unique stable (Lipschitz) in-
verse map ®| 4" : ®(A) — A. Below we will discuss
both necessary and sufficient conditions for this.

3. Existence of a unique inverse map

In [12] it was shown that a necessary condition for a
unique inverse map to exist is that M > My, =
max;; k; + k;. If this is not the case we can find a vector
x € S;®Sj,x # 0 such that &z = 0. The authors further
go on to show that when there are a countable number of
finite dimensional subspaces then the set of such sampling
operators, ® giving a unique inverse is dense.

In [3] we presented a slight refinement of this result for
the case where the number of subspaces is finite. In this
case almost every sampling operator, ®, M > M ,;,, has a
unique inverse on .A. Furthermore even when max; k; <
M < My, for almost every ® the set of points in A
without a unique inverse has zero measure (with respect
to the largest subspace).

All this suggests that we might be able to perform com-
pressed sensing from only slightly more observations than
the dimension of the signal model, i.e. M > dim(A).
Unfortunately we have so far ignored the issue of stability
which we will see presents additional complications.

4. Stability of the inverse map

We now consider when the inverse mapping for the union
of subspaces model is stable. Here we are particularly in-
terested in the Lipschitz property of this inverse map and
we derive conditions for the existence of a bi-Lipschitz
embedding from A into a subset of RM .

The Lipschitz property is an important aspect of the map
which ensures stability of any reconstruction to pertur-
bations of the observation and in effect specifies the ro-
bustness of compressed sensing against noise and quan-
tization errors. Furthermore, in the k-sparse model, the
bi-Lipschitz property has also played an important role
in demonstrating the existence of efficient and robust re-
construction algorithms through the k-restricted isometry
property (RIP) [4, 5, 6, 8].

A natural extension of the k-restricted isometry for the
union of subspaces model is [12, 3]:

Definition: (A-restricted isometry) For any matrix &
and any subset A C RY we define the A-restricted isom-

etry constant § 4 (P) to be the smallest quantity such that

2 < (14+04(®), (3

holds for all x € A.

If we define the set A = {x = x; + x5 : x;,%x2 € A}
then § ; < 1 controls the Lipschitz constants of ¢ and
| A_l (in the standard compressed sensing this is directly
equivalent to d,,). Specifically let us define:
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then a straight forward consequence of the A-RIP defini-
tion is that:

Kr <\/1+44;z 6)
K <= @)
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Note, as always with RIP, it is prudent to consider appro-
priate scaling of ® to balance the upper and lower inequal-
ities in (3).

The following results, proved in [3], give neccessary and
sufficient conditions for ® to be an A-restricted isometry.

4.1 Sufficient conditions

Theorem 1 Foranyt > 0, let

2 12

M>— <ln(2L) + kln () + t) , (8)
o4 oA

then there exist a matrix ® € RM*N gnd a constant ¢ > 0

such

(1= 0a(®)[x5 < [@x[l3 < (1 +da(@)]x[5 ©

holds for all x from the union of L arbitrary k dimensional
subspaces A. What is more, if O is generated by randomly
drawing i.i.d. entries from an appropriately scaled sub-
gaussian distribution then this matrix satisfies equation
(9) with probability at least

1—e ", (10)

The proof follows the same lines as the construction of
random matrices with £-RIP [1].

In contrast to the previous results on the existence of a
unique inverse map this sufficient condition is logarithmic
in the number of subspaces considered.

4.2 Necessary conditions

We next show that the logarithmic dependence on L is in
fact necessary. This can be done by considering the dis-
tance between the optimally packed unit norm vectors in
A as a function of the number of observations. To this
end it is useful to define a measure of separation between
vectors in the different subspaces:



Definition: (A(.A) subspace separation) Let

A = |J;S; be the union of subspaces S; and let
A/S; be the union of subspaces with the i*" subspace
excluded. The subspace separation of A is defined as

A(A) =inf | su inf ||x; — x; 1
(A) i xiegi x;€A/S; I ill2 (11)
lIxill2=1 | lIx;]l2=1

We can now state the following necessary condition for
the existence of an A-restricted isometry in terms of A(A)
and the observation dimension.

Theorem 2 Let A be the union of L subspaces of di-
mension no more than k. In order for a linear map
® : A RN to exist such that it has a Lipschitz constant
K and such that its inverse map ® " : ®(A) — A has
a Lipschitz constant K, it is necessary that

M In(L) '
In (45£K )

Therefore, for a fixed subspace separation, the necessary
number of samples grows logarithmically with the number
of subspaces.

This last fact suggests that extending the compressed sens-
ing framwork to infinite dimensional signals may be prob-
lematic. For example, it implies that the log(/N) depen-
dence in the standard k-sparse signal model is necessary
(from the easily derived bound A(A) > 1/2/k) and there-
fore such a framework does not directly map to infinite
dimensional signal models.

(12)

5. 2 routes to infinity

Most of the results in compressed sensing assume that the
ambient signal space, NN, is finite dimensional. This also
implies in the case of the k-sparse signal model (k < c0)
that the number of subspaces, L, in the signal model is also
finite. In fact we would ideally like to understand when we
can perform compressed sensing when either or both the
quantities, N and L, are infinite. Specifically when might
a stable unique inverse for ®| 4 exist based upon a finite
number of observations.

For example the Finite Rate of Innovation (FRI) sampling
framework introduced by Vetterli ez al. [15] provides sam-
pling strategies for signals composed of the weighted sum
of a finite stream of diracs. In this case both N and L are
uncountably infinite while M > 2k is sufficient to recon-
struct the signal.

Below we consider two possible routes to infinity and
comment on their stability. Note other routes to infin-
ity also exist, such as when we let k, M and N — oo
while keeping k/M and M/N finite [9], or in the blind
multi-band signal model [10, 13], where the sampling rate,
M /N, is finite but where M, N — oo.

5.1 k, L finite and N infinite

We begin with the easy case that the reader might consider
to be a bit of a cheat.

Consider a signal model A C H, where H is an infinite
dimensional separable Hilbert space (i.e. N = 00). As-
sume that both k and L are finite. In this case the union
of subspace model A automatically lives within a finite
dimensional subspace, U C H defined as:

U:=Eps (13)

Note that dim(U) < kL < oo. We can therefore first
project onto the finite dimensional subspace U and then
apply the above theory to guarantee both the existence and
stability of inverse mappings in this setting.

Two signal models that naturally fit into this framework
are: the block-based sparsity model [11], which is re-
lated to the multiple measurement vectors problem and has
been used recently in a blind multi-band signal acquisition
scheme [13]; and the tree-based sparsity model where the
usual k-sparse model is constrained to form a rooted sub-
tree where L < % independent of N [3] and naturally
occurs in multi-resolution modelling. This model has also
been recently extended to include tree-compressible sig-
nals [14]: see section 6..

5.2 k finite, L and N infinite

From Theorem 2 the only way in which the number of
subspaces can be infinite (or even un-countable) while per-
mitting a stable inverse mapping, <I>|;‘1, with M finite is
if the subspace separation, A(,A) = 0. In such a case
the union of subspace model may often form a nonlinear
signal manifold. Note also that when we have an uncount-
able union of k-dimensional subspaces the dimension of
the signal model may well be greater than k.

As an example let us consider the case of a simple Finite
Rate of Innovation process [15]. Such models can be de-
scribed as an uncountable union of subspaces and the key
existence results from [12] immediately apply. However
this tells us nothing about stability. For simplicity we will
limit ourselves to a basic form of periodic FRI signal on
T = R/Z which can be written as:

k—1
2(t) = G(r,a)(t) = > ap(t—m)  (14)
=0

where v are also periodic on T, 7 = {1, ..
a=1{ay,...,a;} € R,

In [15] the possibility of a periodic Dirac stream is consid-
ered, i.e. ¥(t) = d(t), t € [0,1]. Here we avoid the Dirac
stream by restricting to the case where 1(¢) € L?(T) and
directly consider the signal model defined by the paramet-
ric mapping:

., T} and

G :U x RF — L%(T) (15)

where U = {r € R* : 7, < 7;,V¥i < j}. Individual
subspaces can be identified with a given 7. Furthermore
the continuity of the shift operator implies that for any
¥(t) € L2(T), the associated union of subspace model,
A has A(A) = 0. Equivalently we can only find a finite

. L’
number of subspaces, SJ’», whose union, A’ := | ; S;» -



A has A(A’) > € > 0). Theorem 2 can then be used to
lower bound the Lipschitz constants of any embedding in
terms of the number of subspaces, L’ of any such A’.

We have seen that Theorem 2 does not preclude a stable
embedding for such systems. However there is clearly
more work needed to determine when such models can
have finite dimensional stable embeddings. One possible
avenue of research would be to examine the recently de-
rived sufficient conditions for stable embedding of general
smooth manifolds [7, 2].

6. ...and beyond?

In reality all the union of subspace models we have con-
sidered are an idealization. In practise we can expect to, at
most, be able to approximate a signal by one from a union
of subspaces model. In traditional compressed sensing
this is the difference between finding a sparse represen-
taion of an exact k-sparse signal and finding a good sparse
approximation of a compressible signal (i.e. one that is
well approximated by a k-sparse signal).

Recent work at Rice university [14] has shown that for
the special case of restricted k-sparse models (such as the
tree-restricted sparsity) the exact union of subspace model
can be extended to approximate union of subspace models
that are subsets of compressible signal models.

In order to go beyond exact representations further condi-
tions are introduced. Notably:

1. Nested Approximation Property (NAP) - this specifies
sets of models, M g, that are naturally nested.

2. Restricted Amplification Property (RAmP) - this im-
poses additional regularity on the sensing matrix ¢
when acting on the difference between the M sub-
spaces and the Mg _; subspaces (in the k-sparse
case it is interesting to note that the RAmP condition
is automatically satisfied by the k-RIP condition).

There are therefore a number of interesting open ques-
tions. For example, are such additional conditions typi-
cally necessary to go beyond exact subspace representa-
tions? Furthermore can these additional tools be applied
successfully to arbitrary union of subspace models (i.e.
ones that are not subsets of the standard k-sparse model)?
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