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1. INTRODUCTION

This report relates to an internship project carried out at SELEX Galileo from August
2010 to January 2011 entitled Compressive Imaging. The project was facilitated by
the Knowledge Transfer Network (KTN) as part of the Underpinning Defence
Mathematics (UDM) scheme, and was a collaboration between SELEX Galileo and
the University of Edinburgh.

The project concerns a new approach to single-pixel imaging which exploits the
theory of Compressed Sensing (CS). The camera design in question was first
proposed by a team at Rice University [6], and a proof-of-concept model for visible
light was also built. The aims of this report are

e to provide background on the camera design

e to report the results of numerical experiments conducted on a model of the
camera design

e to highlight some of the key design issues that would be likely to arise.

The structure of the report is as follows: In Section 2, we provide background on
Compressed Sensing, and then explain in Section 3 how the proposed single-pixel
camera fits naturally into such a theory. Sections 4 and 5 describe the system model
that we built, first focussing on the CS reconstruction algorithms options (Section 4),
and then describing the model options more generally (Section 5). The most
substantial part of the report is Section 6 which reports the results of numerical
experimentation upon the model.

2. BACKGROUND ON COMPRESSED SENSING

Compressed Sensing (CS) is an emerging paradigm which challenges some of the
established approaches to signal processing. The traditional wisdom is that, in order
to completely capture the information contained in a signal, it is necessary to sample
at a rate at least twice the bandwidth, often referred to as the Nyquist rate. In many
technologies, sampling in this way leads to such a large volume of data that, in order
to satisfy storage or transmission requirements, the data must be compressed. There
seems to be something intuitively wasteful about such an approach in which a full
set of samples are acquired, only for much of the data to be subsequently discarded.
Compressed Sensing, by contrast, asserts that it is possible to accurately reconstruct
signals from sub-Nyquist sampling, provided we make some additional assumptions
about the signal in question, and provided we choose an appropriate sampling
methodology. It is clear that the incentives for adopting such an approach in terms



of sampling time and cost could be significant. CS has many potential applications,
but our interest in this report is on the potential use of CS techniques in imaging.

Suppose then that we have an unknown discretized signal which we model as a
vector X € R", and suppose that we obtain linear measurements of X, which we
can view as inner products of X with a series of ‘test function’ vectors {¢.}, so that

yi =(x.¢)+e for i=1...n,
where ¢, is sampling noise. Writing @ for the nx N sampling matrix whose rows
are the test functions {¢,}, we may represent the sampling process as the matrix

equation
y =dx+e,

where y € R" is the vector of samples.

Translated into the discrete setting, Nyquist sampling would correspond to taking a
full set of measurements, i.,e. n=N. If, in addition, these measurements were
linearly independent, reconstruction would be possible by simply inverting the
sampling matrix ® . By contrast, Compressed Sensing in the discrete setting studies
the case in which we take an incomplete set of measurements, i.e. N < N. In this
case, the system is underdetermined and there is insufficient information as it stands
to reconstruct the original signal X.

A key observation, however, is that many signals have information content much less
than might be suggested by their dimension. In particular, signals are often
compressible in the sense that there is some transform domain in which the sizes of
signal coefficients decay rapidly, so that it can be well-approximated by a sparse
vector in which many of the coefficients are zero. In imaging, for example, the JPEG
and JPEG-2000 compression standards are based on the fact that natural images are
often compressible in a Discrete Cosine Transform (DCT) or wavelet basis. We will
therefore make the modelling assumption that the signal is sparse in some transform
domain. In this regard, let W be an N xN transform matrix, and suppose that
z = WX has exactly k non-zero coefficients, where we assume k <n<N. We will
refer to such a vector as being k -sparse.

The task of reconstructing the original signal from undersampled measurements now
seems intuitively more realistic since the sparsity assumption is really saying that the
true information content of the signal is much lower than its dimension. In fact, we
can now frame the reconstruction task as an optimization algorithm. To do this,
observe that we have two goals to achieve: we wish to obtain a close approximation
to the linear system y = ®x, while we also wish to obtain a k -sparse solution. This

can be achieved by solving the optimization problem
méq |ly —®x|, subject to |¥x| <Kk,
Xe

where we minimize an |,-norm objective function to achieve a good fit to the linear
system, and where we use an |,-norm constraint to control the sparsity (the I,-

norm simply counts the number of non-zero coefficients of a vector). The challenge
of CS reconstruction is now to identify algorithms for solving this problem which, on



the face of it, appears to be combinatorial in nature and therefore far from
straightforward.

In fact, another key ingredient is needed for the approach just outlined to be
effective: we must sample incoherently. Incoherent sampling can be described and
motivated as followed: Suppose we take the sampling matrix ® to be simply
selected rows of the identity matrix. In this case, information from all the
coefficients corresponding to the selected rows would be captured, but any
coefficients corresponding to unselected rows would be completely ignored,
meaning that accurate reconstruction would be impossible. What we need, then, is a
sampling scheme which ‘mixes’ the information from all the coefficients, so that the
samples appear as random noise: this is the principle of incoherence. Perhaps
surprisingly, it turns out that completely random matrices have good incoherence
properties with high probability, and are therefore often the favoured choice of
sampling matrix.

In a nutshell, then, the CS paradigm asserts that it is possible to reconstruct
compressible signals from undersampled incoherent measurements.

Many CS reconstruction algorithms have been proposed in recent years, supported
by a strong theoretical foundation, see for example [5]. In fact, provided certain
incoherence conditions are satisfied, it has been shown somewhat incredibly that
the above |,-constrained problem shares precisely the same solution as the |, -
constrained problem

min

xeR
Such an observation has massive implications since the problem can now easily be
converted to a convex bound-constrained quadratic program, for which many
tractable and efficient optimization methods exist. Theoretical guarantees for so-
called |, -minimization are especially well-developed, but other CS reconstruction

|ly-@x], subject to |[¥x|, <.

algorithms have also been developed, some of which actually operate upon the
original |,-constrained problem.

We now move on to consider the CS single-pixel camera design and show how it fits
naturally into the CS framework.

3. THE CS SINGLE PIXEL CAMERA

3.1 Hardware design

In contrast to a conventional camera which would have a vast array of photon
detectors — one for each pixel — a single-pixel camera is so-called because it has only
a single photon detector or ‘pixel’. The incident light field is directed onto a
specialized type of Spatial Light Modulator (SLM) known as a Digital Micromirror
Device (DMD) which consists of an array of tiny mirrors, one corresponding to each
pixel. Each mirror can be oriented in one of two directions: the ‘on’ position directs



the light for that pixel towards the single detector, while the ‘off’ position directs the
light away from the detector. The light from all the pixels set to the ‘on’ position is
then summed and a measurement is recorded as an output voltage on the photon
detector. The measurement is then subsequently digitized by an A/D convertor. A
series of measurements can be obtained by flipping the mirrors and repeating the
process a number of times. Clearly, the result of such a procedure is encoded
measurements, and the other issue to address is how to decode these
measurements and reconstruct the incident image.
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Figure 3.1: The Rice CS single-pixel camera

The concept of a single-pixel camera is not a new one, and it fits into the broad
category of multiplexing imaging methods in which a series of consecutive
measurements are made by a single detector. What sets the CS single-pixel camera
model apart is a novel sampling approach which means that it is possible to take
fewer measurements. It therefore offers an alternative approach to obtaining
compressed images: rather than taking a full set of samples and subsequently
compressing, compressed samples are acquired in the first place. To achieve this, CS
theory motivates the use of a random sampling procedure in which each mirror is set
randomly to either the ‘on’ or ‘off’ position with equal probability. Figure 3.1 shows
a diagram of the proposed camera design.

Such an approach is likely to offer four main advantages.

e In common with other single-pixel architectures, only one photon detector is
required as opposed to a full pixel array. Compared to visible light, photon
detectors for other wavebands can be much more bulky and expensive to
produce. A single-pixel approach could therefore make possible image
acquisition at wavelengths for which it would otherwise have been
impossible due to size or cost constraints.

e Compared to other single-pixel approaches, fewer samples means that
sampling time could be shorter, a potentially crucial consideration for
defence applications.



e Since fewer samples are taken, the volume of acquired data is reduced,
which is another important consideration since there will often be constraints
on the volume of data that can either be stored or transmitted, for example
an airborne device.

e Compared to traditional sample-then-compress methods, computational
processing is transferred from the front-end sampling phase to the back-end
reconstruction phase. For example, in a traditional approach, an airborne
sensing device may need to process and compress the data, in order to
transmit the data to the ground. By contrast, in the CS paradigm, the
compressed, encoded samples can be immediately transmitted to the ground
for reconstruction. This is significant since it is likely that greater
computational capacity is available on the ground as opposed to in the air.

We now turn to a mathematical model of the camera design outlined in this section.

3.2 A mathematical model

Let us model the incident light field as a discrete pixelated array consisting of N
pixels, We may also represent this ‘original image’ as a vector x € R". By means of
the DMD, the light from all the pixels set to the ‘on” position is summed and
recorded as a voltage on the photon detector. We may model this summation as an
inner product of the original image X with a test function ¢, € RN consisting of
random ones and zeros, giving a single measurement Yy, € R. Sampling error is likely
to occur, particularly as a result of photon counting noise, and subsequently due to

guantization error in the digitization. We choose to adopt a simplistic model for
sampling noise in the form of additive Gaussian white noise. We may therefore write

Yi :<Xv¢i>+eiv

where e, ~ N(0,5°) for some noise parameter o.

In keeping with the CS framework introduced in Section 2, we choose to
undersample the image and take n such measurements, where n < N. Writing @
for the nx N matrix whose rows are the test functions {¢.}, we may represent the

entire sampling process by the matrix equation
y = dx+e,

where y € R" is the vector of samples. The sampling matrix @, as introduced here,
is therefore a random Bernoulli matrix consisting of equiprobable ones and zeros.
The DMD would in fact also permit the use of other random sampling matrices — for
example random %1 entries — and we refer the reader to Section 6.6 for a discussion
of other options. Note that this model fits precisely into the general CS framework
introduced in Section 2.

The samples are then sent to a digital computer for decoding. As was explained in
Section 2, the reconstruction is based upon the assumption that the original image is
compressible in some transform domain, so that it can be well-approximated by a



sparse vector in that domain. Writing ¥ for the N x N matrix which applies some
linear transform to the image (such as a DCT or Haar wavelet matrix), we then use an
appropriate optimization algorithm to solve the problem

Qéﬂ |ly —®x|, subject to |¥x| <Kk,

as outlined in Section 2. Since this is the key remaining challenge, we turn next to the
guestion of reconstruction algorithms.

4. COMPRESSIVE IMAGING ALGORITHM OPTIONS

We showed in Section 2 how the Compressed Sensing problem of reconstructing a

compressible image from undersampled linear measurements may be translated

into the optimization problem
min
xeRN

where @ is the sampling matrix and WYis the sparsifying transform matrix.

ly—@x|, subject to [\¥x], <k,

Equivalently, writing z =¥xfor the transform vector and A=®¥ ™, we may
instead solve in the transform domain the problem

1 .
min E||y—Az||§ subject to ||z|, <k,

where we now choose to square the |,-norm and insert a factor of 1/2. A naive

approach to solving this problem would be an exhaustive search through all possible
support sets for the vector z, which is combinatorial in complexity. The task
therefore is to derive algorithms for solving the above problem which are
computationally tractable. We now turn to the first of these which we chose to
implement.

4.1 Normalized Iterative Hard Thresholding (NIHT)

All the algorithms implemented in the model fall into the broad category of gradient
projection algorithms, which are established methods for solving constrained
optimization problems of the form

mFiﬂ f(x) subject to x e F,

where f(x) is some objective function and F is some feasible set. Gradient
projection methods are iterative procedures which alternate between two steps: a
gradient step and a projection step. In the gradient step, we add on some multiple of
the negative gradient of the objective function f(Xx) evaluated at the current
iterate, with the goal of reducing the objective. In the projection step, we project the
current iterate onto to the feasible set F, thereby forcing the next iterate to satisfy
the constraints.

For such a method to make sense, we require that the objective function is
differentiable, and also that it is possible to project onto the feasible set. Both
requirements are met in the case of our particular problem. Writing

f(z) = %”y — Az||i for the objective function, the gradient is Vf(z) = —A" (y — Az).



Concerning the projection, we wish to project onto the set of k-sparse vectors,
which may be done by applying the Hard Threshold operator H, which simply sets
all but the k largest in magnitude coefficients of a vector to zero. We therefore
arrive at the Iterative Hard Thresholding (IHT) algorithm [2], in which a sequence of
iterates z,,2,,Z,,... is generated by repeatedly applying the iteration

Zyy = Hi[Zp + A (y = Az,

where «,, is a step-size.

The most computationally burdensome steps in each iteration are the Hard
Threshold operator (which involves sorting the coefficients) and matrix-vector
multiplications by A and A'. Since A=®Y™, multiplication by A can be
performed by applying the fast inverse transform ¥ followed by multiplication by
the sampling matrix @ . If the transform matrix W is orthogonal (as is the case for
the DCT and Haar wavelets), we have A" =(®¥')" = P®' which can then be
computed in a similar fashion. In the case of Daubechies wavelets, ¥ is not
orthogonal, but we nonetheless use the approximation A" ~ ¥®' so as to be able
to use the fast transform for ¥ . Also built into the code is the option to switch both
the 5-3 and 9-7 Daubechies wavelet transforms to an equivalent orthogonal version.

It is important to choose the step-size scheme wisely, and the particular scheme we
employed was the Normalized IHT step-size scheme proposed by Blumensath and
Davies [4]. This step-size scheme in fact gives the greatest possible decrease in the
objective whenever the support of consecutive iterates is the same. In the case
where the support changes a backtracking procedure is used to guarantee a
decrease in the objective. NIHT is guaranteed to converge to a local solution of the
optimization problem. However, since the problem is nonconvex, there are
potentially many such local solutions, and somewhat strong conditions on the
conditioning of the matrix A are in fact required to guarantee accurate
reconstruction of the original image x.

Since this algorithm employs the Hard Threshold operator H,, the desired sparsity
of the solution k is the tuning parameter in this case.

Though the algorithm generates a sequence of iterates in the transform domain, the
iterates X,,X;, X,,...in the image domain may be obtained by applying the inverse

transform ¥ .

A suitable termination criterion must also be chosen. In our case, we terminated
whenever the difference between consecutive iterates ||X —xm|2 was less than

m+1

some fixed tolerance level.



4.2 |,-Projection (SPGL1)

Another approach is to reformulate the original optimization problem by replacing
N

the |,-norm by the |, -norm, which is defined as ||Z||l = Z|Zi|' This is motivated by
i=1

the well-established observation that solutions with small |, -norm also tend to have

small I,-norm, a property that has been explored extensively in the CS literature. We

therefore choose to solve the problem
.1 2 .
min E||y— Az|, subject to |||, <<,
for some choice of the tuning parameter 7. This problem may also be solved using a
gradient projection approach, since it is also possible to efficiently project onto the
|, -ball {]|z||l < 7}. Such an approach was proposed by Van den Berg and Friedlander

as part of the SPGL1 (Spectral Projected Gradient for I,) algorithm, which is freely

available to download on the web [7]. The code we implemented is very similar to
SPGL1.

Analogous to IHT, the algorithm consists of repeated application of the iteration
Zm+l = Pr[zm +a, AT (y - Azm)]!
where P_ denotes projection onto the the |, -ball {||Z||1 < 7}. The choice of step-size

scheme is again important, and we followed SPGL1 in selecting the so-called Barzilai-
Borwein step-size scheme. Since the projection in this case is a convex projection,
the problem above has a unique solution, and (provided backtracking is used — see
below) our algorithm is guaranteed to converge to this unique solution. In general,
somewhat strong conditions on the conditioning of the matrix A are required to
guarantee that this solution does in fact give an accurate reconstruction of the
original image X, though in the specific case of Gaussian matrices, much weaker
conditions have been derived which mirror how the algorithm behaves in practice.

Two additionally options have also been built into the |;-projection algorithm:
debiasing and backtracking. Debiasing refers to a post-processing phase after the |-
projection algorithm has terminated. Using the solution from the |;-projection
algorithm as a starting point, a simplified version of the NIHT algorithm is run in
which we do not allow any further changes to the support set. In this case, the NIHT
algorithm simply reduces to the classical steepest descent algorithm for
unconstrained optimization. The motivation for the use of a debiasing phase is that
projecting onto the I, -ball has the effect of shrinking the non-zero coefficients,
leading to a bias towards solutions with smaller coefficient magnitudes. The
debiasing phase is an attempt to correct for this. Essentially, |1-projection is used to
identify the support of the solution, and the debiasing phase is used to determine
the precise values of the selected coefficients.

Backtracking is a common technique in optimization algorithms for appropriately
controlling step-sizes. As was described earlier, the NIHT algorithm includes a
backtracking stage whenever the support set of the iterates changes. In fact, the



SPGL1 algorithm (which our algorithm resembles closely) also includes a
backtracking step. However, we found that for +1 and Gaussian sampling schemes
the backtracking step was not in practice needed and, moreover, slowed the
algorithm down considerably, which is why the algorithm was implemented with the
default option of no backtracking. However, we found that a backtracking step was
required when a Bernoulli zero-one sampling scheme was used — see the discussion
on sampling schemes in Section 6.5.

4.3 Iterative Tree Thresholding

The previous two algorithms are based upon the assumption that the original image
can be well-approximated by a sparse vector in the transform domain. However, in
the case of wavelet transformes, it is possible to make further assumptions about the
transform coefficients. In particular, 2D wavelet transforms break up the image into
progressively finer and finer scales, which leads to a quad-tree structure in which
each coefficient has exactly one ‘parent’ and four ‘children’. Large coefficients of
piecewise-smooth images tend to be ‘inherited’ by their ‘children’, so that the large
coefficients of such images can be well-approximated by a connected subtree. This
motivates a more refined image model, where we assume not only that our image is
k -sparse in a given wavelet domain, but also that its coefficients form a connected
subtree.

We may now conceive of an adaptation to NIHT in which we replace the Hard
Threshold with a projection onto the set of vectors whose coefficients form a
connected subtree. What makes it possible to implement this idea is that such a
projection is well-defined and, furthermore, there exists an algorithm which
accomplishes it, namely the Condense Sort and Select Algorithm (CSSA) [3].
Unfortunately, however, projection by means of the CSSA becomes the most
computationally burdensome part of the algorithm. To mitigate this, we
implemented an approximation to the projection in the form of a greedy quad-tree
search algorithm, which is significantly faster.

Writing G, for the operator which applies the greedy quad-tree search algorithm,
we proceed by repeated application of the iteration

Zys = Gi[2y + a2, AT (y = Az,,)],
where we use the same step-size scheme as for NIHT.

5. CAMERA MODEL DESCRIPTION

The CS single-pixel camera may be modelled as a two-stage process of sampling
followed by reconstruction. The sampling model takes an input image, converts it to
a vector X, and computes the undersampled measurements y=®x+e. The
reconstruction process seeks to reconstruct the original image from the
measurements by employing a CS reconstruction algorithm. A MATLAB
implementation of this model has been built, which enabled us to carry out a range
of numerical tests, the results of which are the subject of the next section.



5.1 Model options
The model is implemented with a number of options.
(a) Input image. The model allows essentially any square input image to be entered.

(b) Sampling scheme. The simplest design of the DMD, in which each mirror is
randomly assigned an ‘on’ or ‘off’ position, corresponds to a sampling matrix
consisting of random zeros and ones. We may also consider adaptations to this
design, which give rise to different sampling matrices. For example, if for one frame
all the mirrors are set to the ‘on’ position, the mean light intensity can be measured
and subtracted from each measurement, and the sampling process can be modelled
by a Bernoulli matrix consisting of random plus or minus ones. Alternatively, by
dithering the mirrors on and off during the integration time, it may be possible to
program the DMD with other sampling matrices, such as Gaussian matrices, where
each entry is drawn independently from a standard Normal distribution. The model
allows the choice of any of the three sampling scheme options described above.

(c) Reconstruction algorithm. There is a choice of three reconstruction algorithms:

(i) Normalized Iterative Hard Thresholding (NIHT)

(ii) |1-projection (based on SPGL1)

(iii) Iterative Tree Thresholding.
The |;-projection algorithm also has two additional options: debiasing and
backtracking. The |1-based method tends to shrink the image coefficients, and a
debiasing phase can be used to correct for this and achieve a sharper image. See the
discussion of signal-to-noise ratio in the next section for an illustration of the value
of debiasing. Backtracking refers to a more conservative step-size scheme in the |-
projection method.

(d) Sparsifying transform. Underpinning the CS approach is the assumption that the
image in question is naturally compressible (or approximately sparse) in some
transform domain. Four 2D transforms are available to choose from:

(i) Discrete Cosine Transform (DCT)

(ii) Haar wavelets

(iii) Daubechies 5-3 biorthogonal wavelets

(iv) Daubechies 9-7 biorthogonal wavelets.
These transforms are established industry standards for image compression. The
DCT is the basis of the JPEG compression standard, and the two Daubechies wavelets
are the two transforms used by JPEG-2000. Daubechies wavelets are generally a
good option for piecewise smooth images, while Haar wavelets represent an
alternative for naturally angular images. The various options allow an appropriate
choice of sparsifying transform to be made for the image in question. Due to their
quad-tree structure, all 2D wavelet transforms require the image size to be a power
of two. This quad-tree structure is directly exploited by the Iterative Tree
Thresholding algorithm, and it only makes sense to use this algorithm option in
conjunction with wavelet transforms, and not the DCT.



5.2 Parameter choice

As well as the above options, there are also three parameters that the model user is
able to control.

(a) Undersampling ratio. Given an input image of dimension N, we take n<N
samples, and so the ratio 6 =n/N € (0,1] gives the level of undersampling.

(b) Tuning parameter. Each algorithm requires the input of a tuning parameter
which either directly or indirectly controls the sparsity of the reconstructed solution
in the transform domain. For NIHT and lIterative Tree Thresholding, the tuning
parameter is explicitly the sparsity k. For |1-projection, the tuning parameter is 7,
the |1-norm of the reconstructed solution.

(c) Noise level. Noise in the sampling process is modelled as additive Gaussian white
noise, the volume of which may be controlled by the parameter o, so that noise

drawn i.i.d. from a N(0,o?%) distribution is added to each measurement.

A key aim of the experimentation carried out was to understand the interplay
between these parameters, and how they affect performance metrics such as
accuracy of reconstruction. In particular, the crucial practical question is how the
accuracy of reconstruction is impacted by reducing the number of measurements,
i.e. decreasing the undersampling ratio ¢ .

6. EXPERIMENTATION

6.1 A standard test image

Our interest is especially in quantifying image reconstruction accuracy, and
investigating how it is affected by the key model parameters. A natural choice of
metric for reconstruction accuracy is the RMSE of the output X compared to the

input X, i.e.
1.
RMSE = ,/W”x—x”i.

There are other possible choices of metric for reconstruction accuracy, for example
peak signal-to-noise ratio (PSNR) which is considered in Section 6.10. As well as
reconstruction accuracy, we are also interested in computational efficiency, and so
the running time of the reconstruction is also a metric of interest. As a first example,
we applied the model to a 256x256 cut from the standard lena test image, which is a
grey-scale image with integer pixel values between 0 and 255. The sampling scheme
was +1 sampling and reconstruction was using the |;-projection algorithm, and with
9-7 wavelets as the sparsifying transform. The noise level was set to zero, and we
selected an undersampling ratio of 0.2 (number of samples a fifth of the number of
pixels). We sought to optimize the tuning parameter 7, and found a value of 0.5 to
be roughly optimal. The original and reconstructed images are shown in Figure 6.1.
The RMSE was 15.36 and the running time on a University of Edinburgh workstation



consisting of two x5650 6-core processors was 48.4 seconds. The result illustrates
that, while undersampling leads to a degradation in image quality, a clearly
recognizable image has been produced using significantly fewer samples than is
traditionally thought possible. The next stage was a more systematic investigation
into the impact of undersampling upon performance metrics.

" : % s
Figure 6.1: 256x256 lena test image original and reconstruction using |-projection (0 =0.2)

6.2 Systematic testing of the parameter space

If we make the simplifying assumption that there is zero sampling noise, there are
two parameters that we are free to vary: the undersampling ratio 6 and the tuning
parameter (K or 7). We may therefore test the model on a mesh of equally-spaced
grid-points throughout the parameter space, and use this to identify the optimal
parametric configuration for the test data. For each point on the mesh, 100 trials
were performed and the results averaged. In each trial, the model is '
applied to the same 64x64 cut from lena (showing the recognizable
feature of an eye). Performance metrics of the solution RMSE and
running time, along with other data of interest such as number of
iterations and sparsity of the solution, are then recorded. This test framework can
then be applied to any combination of the sampling scheme, reconstruction
algorithm and sparsifying transform options.

Figure 6.2 shows a plot of average RMSE throughout the parameter space for +1
sampling, the |;-projection algorithm and 9-7 wavelets. The tuning parameter 7 is
here normalized as a factor of the I;-norm of the original image in the transform
domain, which we refer to as the r -factor.

A key feature, which was in fact observed across the whole range of model options,
is the existence of an ‘optimal’ tuning parameter for a given level of undersampling,
i.e. the value of 7 -factor which minimizes the RMSE. The superimposed black curve
traces out the optimal tuning curve. The interpretation of this dynamic is as follows:
Below the curve, the |;-projection algorithm is able to obtain a good approximation
to the optimally-compressed image for a given compression ratio determined by the



tuning parameter. As the tuning parameter is increased, the compression ratio
increases and a better and better approximation is achieved to the image as more
and more wavelet coefficients are included. Above the curve, while the target
compression ratio becomes more and more favourable, the algorithm becomes less
and less able to find a good approximation to the optimal compression — essentially
the algorithm no longer has enough information to identify the required solution.
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Figure 6.2: Average RMSE for | ;-projection

Following the optimal tuning curve through the parameter space from right to left,
we see that the solution RMSE gradually degrades as the undersampling ratio is
decreased. In other words, we would expect a controlled degradation in
reconstruction accuracy as the number of samples is reduced.

To illustrate these observations, Figure 6.3 gives six reconstructed images
corresponding to the points marked with red crosses on the RMSE plot. Two
different undersampling ratios (0 =0.4 and ¢ =0.7) have been selected, and for each
we provide an example at optimal tuning, below-optimal tuning and above-optimal
tuning.

The plot of average running time (see Figure 6.4) is particular promising in that
running times are everywhere under 5 seconds. The |;-projection algorithm used
here is a gradient projection algorithm in which the most expensive operations are
matrix-vector products. Such an approach is likely to compare favourably in terms of
computational efficiency with many other CS reconstruction algorithms, especially



interior point methods or those which employ computationally expensive projection
steps. The same comment would also apply to NIHT.

A striking feature of Figure 6.4 is how the running time increases as one approaches
the optimal tuning curve. This points to another possible trade-off: reconstruction
accuracy versus running time.

n/N=04 n/N =0.7

{n=1638) (n=2867)
above-optimal RMSE : 13.46 RMSE : 7.53
tuning time : 3.58s time : 6.17s
tuning : 1.0 tuning : 1.1
optimal tuning RMSE : 7.10 RMSE : 3.00
time : 5.01s time : 9.20s
tuning : 0.8 tuning : 0.9
below-optimal RMSE : 10.53 RMSE : 6.21
tuning time : 1.16s time : 1.86s
) tuning : 0.6 tuning : 0.7

Figure 6.3: Example reconstructed images using | ;-projection
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6.3 Results for different algorithms

It is instructive to compare the performance of each of our three algorithms on the
same test image, sampling scheme and sparsifying transform that were used in
Section 6.2. In this regard, we ran multiple-trial tests equivalent to the one described
in Section 6.2 for both the other two algorithms: NIHT and iterative tree
thresholding. Plots of average RMSE and average running time were obtained and
are displayed in Figures 6.5 and 6.6 (NIHT), and in Figures 6.7 and 6.8 (iterative tree
thresholding) .

(a) NIHT

For NIHT, the tuning parameter is the sparsity k, which we here normalize to
p =k/n which gives the sparsity as a fraction of the number of samples. The
optimal tuning curve is superimposed as the black curve, demonstrating that the
same ‘optimal tuning’ behaviour persists for NIHT as well. Comparing Figure 6.5 with
Figure 6.2, we observe that the optimal RMSE for NIHT for a given value of ¢ is
generally slightly higher than the corresponding value for |1-projection, suggesting
that |1-projection has slightly better reconstruction accuracy than NIHT in terms of
the RMSE metric.
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Figure 6.5: Average RMSE for NIHT

Figure 6.6 shows that the running times for NIHT behave somewhat differently from
|1-projection in that running time continues to increase as the tuning parameter
(sparsity) is increased, even above the optimal tuning curve. Running times for NIHT



are generally higher than for |i-projection, with the difference being especially
marked for large values of 6 . However, the goal of Compressed Sensing is to achieve
small values of &, and in this regime the difference in running time is small.
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Figure 6.6: Average running time (s) for NIHT
(b) Iterative tree thresholding

Due to longer running times, the experiment for iterative tree thresholding was
limited to 10 trials. We see in Figure 6.7 that the tree-based approach gives an
improvement when compared to NIHT (the algorithm on which it is based), but it
does not in fact give an improvement over |,-projection in terms of the RMSE metric.
However, it may be that the lena image does not possess sufficient tree structure in
its wavelet coefficients for a benefit to be observed, or equally that the image size is
too small for the tree-based approach to offer an advantage.

The reconstruction times (Figure 6.8) are significantly increased for the tree-based
approach except for very small values of ¢, reflecting the fact that the projection
step is more computationally demanding.
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Figure 6.7: Average RMSE for iterative tree thresholding
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Though the tree-based approach does not offer an advantage for the lena test
image, we can however give an example of an image where it does. Figure 6.9 shows
an image (original and reconstruction by both |;-projection and iterative tree
thresholding) generated by the CAMEOSIM package which has simulated a short-
wave infra-red image of a vehicle against an uncluttered background, a scene which
is the subject of extensive experimentation in later sections. As well as having a
slightly higher dimension (128x128), the image also has large regions that are
approximately smooth, and so one would think it a good candidate for a wavelet
connected tree model. Reconstruction in both cases is with £1 sampling and Haar
wavelets, with undersampling ratio 0 =0.15. Figure 6.9 indicates that a result with a
lower RMSE can be achieved using iterative tree thresholding. In particular, the
reconstructed image appears to be sharper for the tree-based approach — see
Section 6.10 for a comparison of the reconstruction algorithms in terms of signal-to-
noise preservation.

original |,-projection iterative tree thresholding

I T 2

RMSE :9.13 RMSE : 7.40
t:72.57s t: 103.92s

Figure 6.9: A favourable example for iterative tree thresholding

6.4 Comparison with classical compression

Compressed Sensing may be viewed as an alternative method of compression:
instead of acquiring a full set of samples and subsequently compressing, the CS
approach is to acquire compressed samples in the first place. It is natural therefore
to compare the results of the CS camera model with other classical compression
strategies. In particular, let us consider the ‘optimal’ compression strategy of
keeping only the k largest (in magnitude) transform coefficients while setting the
rest to zero. Figure 6.10 shows a plot of compression error RMSE against
compression ratio (k/N) when this optimal strategy is applied in the 9-7 wavelet
domain to the 64x64 lena test image used in Sections 6.2 and 6.3.

Using this data, we may compare the RMSE of a reconstructed solution with the
optimal RMSE achievable for the same sparsity level. We choose to use NIHT for this
comparison since the tuning parameter k is explicitly the sparsity, and therefore
directly related to the compression ratio. Figure 6.11 shows a plot of the RMSE
amplification factor, i.e.
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where X, is the optimal k -sparse compression in the 9-7 wavelet domain, for the
64x64 lena image, and where X is the k -sparse solution obtained using NIHT.

Superimposed as a black curve is the same optimal tuning curve from the previous
section. In the region of interest, i.e. close to the optimal tuning curve, we see that
the amplification factor is well-behaved, typically taking a value around 1.5. In fact,
below the optimal tuning curve, the amplification factor is always less than 2. The
interpretation is that, even though we are taking potentially far fewer
measurements, it is possible to recover compressed solutions whose compression
error is only a small factor worse than the best conceivable compression.
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Figure 6.10: ‘Optimal’ RMSE against compression ratio for lena with 9-7 wavelets
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Figure 6.11: Average RMSE amplification factor for NIHT

6.5 Exactly sparse images: further insight

Further insight into the behaviour of our algorithms can be gained by considering
what happens when our original image is exactly sparse in the given transform
domain (so that the classical compression error is zero). As is well documented in CS
theory [5], in the exactly sparse case, there exists a region of the parameter space
within which the original image can be exactly reconstructed with overwhelming
probability for large problem sizes. We may identify this region for NIHT by first
compressing the 64x64 lena test image so as to be Kk -sparse in the 9-7 wavelet
domain, where K is the sparsity tuning parameter for NIHT. We then run 100 trials
on a mesh as in previous sections and record the proportion of successful exact
reconstructions, which gives an estimate of exact reconstruction probability. Figure
6.12 shows the result of this experiment in the form of a plot of success probability.
A clear phase transition phenomenon can be observed, with a quite sharp transition
between guaranteed failure (probability 0) and guaranteed success (probability 1).
This plot makes plain the region of the parameter space where the NIHT algorithm is
able to function, and so provides the underlying explanation for the ‘optimal tuning’
behaviour reported in Sections 6.2 and 6.3. Such a phase transition phenomenon
would also be expected for the other two algorithms, |;-projection and tree-based
thresholding.
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Figure 6.12: Phase transition for reconstruction of exactly sparse images using NIHT
6.6 Robustness to noise

In sections 6.1 to 6.5, we worked under the simplifying assumption that there is no
noise in the sampling process. In order to now capture the inherent imprecision of
any imaging device, we now examine the impact of the injection of additive Gaussian
white noise e such that y = ®x+e and each entry of e is distributed as N(0,5?).
Figure 6.13 shows a plot of average RMSE when Gaussian sampling noise with
standard deviation o = 2.5 (approximately 1% of the dynamic range of the image) is
built into the model. All other model options are the same as for the equivalent
noiseless plot in Figure 6.2 — to avoid repetition we refer the reader to section 6.2 for
the details. Comparing Figure 6.13 with Figure 6.2, we see in general a small increase
in average RMSE across the parameter space: the contours move slightly to the right
when noise is added. However the change is small, suggesting that the model is
robust to noise. Figure 6.14 gives the equivalent plot for a higher level of noise:
o =25. As would be expected, we same a more considerable increase in the RMSE
throughout the parameter space, though accuracy of reconstruction is not lost
entirely.

Another way to examine the effect of the presence of noise on the system is to ask
by what factor the RMSE of the noise is amplified in the reconstructed solution.
Identifying this factor, however, is complicated by the fact that we have
reconstruction error due not only to the noise, but also due to natural compression
loss. In Section 6.4, we investigated the reconstruction error as an amplification of
the compression error. In order to isolate the contribution from the noise alone, we



designed a slightly different experiment for NIHT in which we first compress the
64x64 lena test image so as to be k -sparse in the 9-7 wavelet domain, where K is
the sparsity tuning parameter for NIHT (as in Section 6.5). CS theory tells us that, in
the absence of noise, such an image can be exactly reconstructed with high
probability within a certain region of the phase space. Any reconstruction inaccuracy
can therefore be fairly attributed to the presence of noise in the sampling process.
Given a reconstructed solution X, we therefore define the noise amplification factor
to be the solution RMSE divided by the RMSE of the noise vector ¢, i.e.

1
N

"l

n 2
Figure 6.15 gives the noise amplification factor plot for o = 2.5. Superimposed over
the plot is the optimal tuning curve from Section 6.3. We see that in the region of
the optimal tuning curve, the noise amplification factor is well-behaved and in fact
never exceeds 2. In fact, the amplification factor can be significantly lower even than
this, especially for small 6. In other words, the CS reconstruction can even have a
denoising effect, actually reducing the RMSE. An explanation for this behaviour is
that, since the CS reconstruction obtains a good approximation to the best classical
compression in which small coefficients are thresholded out, the result is that small
noise contributions can be thresholded out as well.
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Figure 6.13: Average RMSE for Gaussian sampling noise with o = 2.5
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6.7 Discussion of sampling schemes

This section addresses a hitherto unresolved issue: the results presented in Sections
6.1 to 6.6 are for the £1 sampling scheme, whereas the camera design outlined in a
previous section is modelled naturally by a Bernoulli matrix consisting of random
zeros and ones. Why the discrepancy?

The Bernoulli sampling option was implemented in the model and experimentation
along the lines already outlined for 1 sampling was carried out. What these
experiments revealed is that all three algorithms performed significantly poorer for
Bernoulli sampling. RMSEs of reconstructed solutions were higher, the behaviour of
the algorithms more erratic, and sometimes the algorithms cycled and didn’t even
converge. The underlying reason for this appears to be that Bernoulli matrices are
badly conditioned — in particular, they have one eigenvalue that is much larger than
the rest. Such a problem is generally a challenge for gradient projection methods,
which are sensitive to the conditioning of the matrices involved.

The solution to this problem was the re-introduction of a backtracking step into the
|1-projection algorithm. Provided this step is included, it was found that I;-
projection gave similar reconstruction properties for Bernoulli matrices as for *1
matrices. Running times were increased however, as the backtracking step
significantly slows down the progress of the algorithm. While we were able to
demonstrate that it is possible to reconstruct from Bernoulli sampling, it still remains
preferable from the point of view of reconstruction to work with +1 matrices.

The other sampling option available in the model is Gaussian sampling. In this case,
the reconstruction algorithms were observed to behave in a similar manner to when
+1 sampling is used. This is also to be expected from a theoretical point of view: both
+1 and Gaussian matrices have entries that are centred about zero, which leads to
them being well conditioned.

6.8 Comparison of wavebands using CAMEOSIM

While the single-pixel camera was first studied in the context of visible light, it is for
other wavebands, such as infra-red, that it is more likely to find an application.
Sampling light outside the visible spectrum often requires the use of more exotic
detectors which may be either expensive or bulky. In such cases, there may be
considerable incentives to explore the option of moving from many photon
detectors to a single detector or ‘pixel’. One possible application of the CS single-
pixel approach is in multi-spectral imaging in which the light field would be
simultaneously directed (by means of an appropriate DMD configuration) onto a
number of detectors corresponding to different wavebands. It is interesting
therefore to address the issue of how reconstruction of the same scene may vary
across different bands.

The CAMEOQOSIM package was used to simulate a 128x128 image of a vehicle against
an uncluttered background in different wavebands. As well as visible light, images



corresponding to short-wave (SW), medium-wave (MW) and long-wave (LW) infra-
red bands were obtained, along with a range image. Using =1 sampling, the |-
projection algorithm and Haar wavelets (which are especially well-suited to angular
objects such as the vehicle in question), and choosing an undersampling ratio of
0 =0.15, the tuning parameter was optimized for each band, and the ‘optimal’
solutions found in terms of RMSE. The tests referred in Sections 6.8 to 6.10 were
conducted on a standard HP xw6400 desktop, which is why the running times are
generally longer than those reported in other sections. The recovered images, along
with the originals, are shown in Figure 6.16.

visible SW MW LW range

original

W | oo

reconstruction

-

data RMSE :12.94 RMSE : 9.13 RMSE : 11.37 RMSE : 8.60 RMSE : 3.87
t:29.71s t:72.57s t:54.245 t:52.60s t:22.65s
tuning : 0.55 tuning : 0.8 tuning : 0.6 tuning : 0.7 tuning : 0.85

Figure 6.16: Example reconstructions in different wavebands

Figure 6.16 shows some variation in reconstruction accuracy between the bands. In
particular, the range image has a markedly lower RMSE than the light intensity
bands. Also, the reconstruction for SW and LW is better than for visible and MW.
There are two contributory factors to these differences. Firstly, the images in the
different bands vary in terms of their natural compressibility. For example, the
background for visible light, though relatively uncluttered, is more complex than for
SW. Since CS algorithms do not make use of a priori information about the location
of objects of interest, the reconstruction algorithm will ‘use up’ some its allocation of
wavelet coefficients in capturing the background, leaving less coefficients available
for the vehicle. On the other hand, the range image is less complex and therefore
more naturally compressible, which is why a more accurate recovery is possible.
Secondly, the images vary in terms of the contrast between object of interest and
background. The best reconstruction (discounting the range image) is obtained for
LW, due in part to the marked contrast between the vehicle and its background.

More generally, these two issues capture the image-dependent nature of CS
reconstruction performance. In particular, the CS approach is predicated on the
assumption that the image is naturally compressible, and therefore its effectiveness
is limited by how well a given image satisfies this assumption.



6.9 Effect of foreground and background clutter

In reality, objects of interest are likely to be surrounded by clutter, either in the
foreground or background, and a crucial issue for any imaging approach is the
dependency of reconstruction accuracy upon the level of such clutter. To investigate
this, we obtained from CAMEOSIM simulated images of the same scene, except with
background clutter added in the form of trees. Figure 6.17 shows the reconstructed
images, with and without trees, for the three infra-red wavebands. The same model
options were again chosen: +1 sampling, the I;-projection algorithm, Haar
wavelets, and undersampling ratio 0.15.

without trees with trees
data original recovered recovered original data
SW | RMSE:9.13 [ | & | RMSE: 2687
t:72.57s t:26.86s
tuning : 0.8 % tuning : 0.4
MW RMSE : 11.37 RMSE : 18.78
t:54.24s t:55.14s
tuning : 0.6 tuning : 0.5
Lw RMSE : 8.60 RMSE : 15.97
t:52.60s t:34.33s
tuning : 0.7 tuning : 0.45

Figure 6.17: Example reconstructions with and without background clutter

It may be observed that the impact of additional clutter is much greater for SW than
for MW. For MW the vehicle itself is reconstructed to a similar degree of accuracy as
before, whereas for SW the reconstruction is so poor that the top of the vehicle
cannot be distinguished from the background. Part of the reason for this is again
contrast: for SW the light-coloured background is replaced with a background of
intensity much closer to the vehicle. However, the most complete explanation of the
difference is in terms of how the natural compressibility of the images changes when
the trees are added. Figure 6.18 plots the RMSE obtained from the ‘optimal’
compression of an image (thresholding out the smallest wavelet coefficients) against
compression ratio. The plots entirely mirror the image results: without trees the SW
image is more naturally compressible, whereas when trees are added the SW image
actually becomes the least naturally compressible.
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Figure 6.18: Compressibility of images in different bands
6.10 Peak signal-to-noise ratio and debiasing

Section 6.9 demonstrates how the ability of a CS algorithm to reconstruct objects of
interest in the presence of background clutter depends upon the compressibility of
the background and also upon the contrast between the object and the background.
Attached to this, another natural question to ask for a potential surveillance
application is whether the CS approach can be used to carry out remote sensing.

We therefore designed an experiment to explore this issue. CAMEOSIM was used to
simulate images of the scene featuring a vehicle against a background of trees used
in Section 6.9, viewed from different horizontal distances of 1.35km (as in the
previous section), 5km and 10km. A particularly appealing choice from the point of
view of SNR was to use the LW infra-red images, since the vehicle appears as an
object of high intensity against a low intensity background. We may define a peak
signal-to-noise ratio of the original image to be the average intensity of the vehicle
divided by the average intensity of the background. By recording a mask
corresponding to the location of the vehicle in the original image, we may then
obtain a measure of the PSNR of the reconstructed image as the average intensity of
the masked region divided by the average intensity of the unmasked region. We are
interested in whether the PSNR is preserved by a particular recovery algorithm, and
so in this regard we define the ‘PSNR factor’ metric as the PSNR of the reconstructed
image given as a percentage of the PSNR of the original image. A PSNR factor of
100% indicates that the contrast between object of interest and background is
entirely preserved; a PSNR factor significantly below 100% indicates that significant
contrast is lost in the sampling and reconstruction process.



Original I |1-debias NIHT
1.35km
PSNR factor : 89% PSNR factor : 90% PSNR factor : 95%
RMSE : 16.0630 RMSE : 16.7401 RMSE : 17.4469
t:37.2s t:15.0s t:33.3s
5km
PSNR factor : 79% PSNR factor : 92% PSNR factor : 94%
RMSE : 10.7793 RMSE : 10.4922 RMSE : 10.9946
t:20.5s t:9.8s t:32.0s
10km
PSNR factor : 79% PSNR factor : 88% PSNR factor : 97%
RMSE : 6.8040 RMSE : 6.8157 RMSE : 6.6104
t:20.9s t:17.4s t:62.0s

Figure 6.19: Example LW reconstructions at varying distances

Figure 6.19 shows the reconstructed image for the three distances and for three
different algorithms: |,-projection without debiasing, |1-projection with debiasing,
and NIHT. As in Sections 6.8 and 6.9, the model options are +1 sampling with 6 =0.15
and Haar wavelets. It can be observed that, even though |;-projection tends to give
better overall reconstruction accuracy in terms of RMSE, NIHT gives better results
when the metric of PSNR factor is used. The difference between the reconstructions
between the different algorithms is observable: the vehicle appears brighter and
stands out more noticeably from the background in the images reconstructed using




NIHT than those reconstructed using |;-projection. The reason for this is the
tendency of | ;-projection to shrink the transform coefficients.

This effect can be mitigated by including a debiasing step in the |,-projection
algorithm. There is clear evidence here that the addition of debiasing tends to
increase the PSNR factor. It is interesting to note, however, that the optimal tuning
parameter is lower when debiasing is used, and the image as a whole often looks
less convincing, even though the PSNR has been enhanced. This suggests that the
decision as to whether to include a debiasing step would depend upon which
performance metric is most desirable.

Overall, however, the conclusion from these tests is promising. Especially when NIHT
is used as the reconstruction algorithm, the PSNR is almost entirely preserved, even
at remote distances of 10km. The underlying explanation for this success is that CS
reconstruction algorithms are able to give a good approximation to the ‘optimally
compressed’ image in the particular transform basis. In our particular case, the
sparsifying transform is the Haar wavelet basis, and it is well-known that wavelets in
general are particularly effective at localizing objects in a scale-independent way. It is
the use of a wavelet basis therefore that is the crucial reason why the CS camera
model is able to preserve PSNR at distance. If, for example, the DCT had been used
as the sparsifying transform, one would expect the PSNR results to be much poorer.

It is worth also mentioning here an experiment that was conducted as an aside.
Typically we need to assume that our image is compressible in some transform
domain. However, the images considered in this section feature a small object of
high intensity against a background of low intensity. By subtracting off the mean
intensity of the background, it is possible to model the image as being compressible
in the image domain, i.e. the identity as the sparsifying transform. Because such a
strategy effectively sets the background to zero, compression in the image domain
actually magnifies the PSNR. For example, using NIHT with 100 pixels in the image
domain, a PSNR factor of 29,000% can be achieved! It is worth bearing in mind, then,
that very simple images consisting of small objects of high intensity against a low
intensity background can be most effectively compressed in the image domain. For
this reason, the option to choose the identity as the sparsifying transform is also
built into our MATLAB model.

6.11 Frequency response

One feature of interest for any compression strategy is the frequency response: Does
the method keep the low frequencies and discard the higher ones? Is the
compression error evenly spread across the frequency domain, or is there some
observable bias? The answers to these questions give important IIII

information about the ability of a given technique to retain detail. To
investigate this, we used for our original image a 64x64 structured
pattern consisting of four vertical bars. In order to capture the frequency
behaviour, we used the DCT transform and compared the result of classical
compression with the result of reconstruction using NIHT, matching the sparsity




tuning parameter of NIHT to the compression ratio as was outlined in Section 6.4.
The sampling scheme was again taken to be +1, with the undersampling ratio set to
0 =0.5.

Figure 6.20 shows a plot of the DCT of the original uncompressed image. Figures 6.21
to 6.23 are plots of compression error for different sparsity levels (Figure 6.21:
k =50; Figure 6.22: k =100; Figure 6.23: k =150). The blue lines show the classical
compression error, whereas the red lines give the additional error that occurs from
reconstruction by NIHT on top of the classical compression error.

At k =50, both the compression and reconstruction error appear to be well spread-
out across the frequency domain. At k =100, we observe that classical compression
picks up all the low frequency components, leaving error only in the high frequency
components. On the other hand, the additional error resulting from NIHT
reconstruction for k=100 appears evenly spread out over the frequency domain,
and clusters around the true non-zero DCT coefficients of the original image. By
k =150, classical compression completely captures the original signal, indicating that
our signal has so much structure that it is in fact exactly sparse in the DCT domain
with sparsity less than or equal to 150. The NIHT compression error is small,
indicating that NIHT is converging to the exact solution — this additional error could
be made arbitrarily small by strengthening the termination criterion. We see again
that additional compression error is spread out across the frequency domain,
clustered around the true non-zero coefficients, with no observable bias towards low
or high frequencies.
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Figure 6.20: DCT of original uncompressed bar pattern
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Figure 6.21: Compression/reconstruction error (k=50)
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Figure 6.22: Compression/reconstruction error (k=100)
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Figure 6.23: Compression/reconstruction error (k=150)

6.12 Extension to 3D moving images

So far in this report we have assumed that the scene of interest is static over the
period of the image acquisition. A natural next question to ask is whether these CS
techniques can be extended to 3D moving images. This question has already been
addressed in the CS literature, see for example [6].

Traditional CS imaging theory considers a series of measurements taken from a
single image. However, for a moving scene, each measurement will act on essentially
a different image. To be able to leverage traditional CS imaging theory, therefore, we
must make the modelling assumption that the image changes slowly over a group of
snapshots, which we can then equate to a single video frame. Let us, then, represent
an acquired video as a sequence of F frames, each consisting of N pixels, where we
take n measurements per frame. Omitting sampling noise from our consideration for
simplicity, we may therefore model the acquired measurements as Yy, = ®;X; for

i1=1...,F, where each @, isan nx N sampling matrix.

A basic approach is now to view the problem as F separate CS problems. Selecting
Y to be some appropriate 2D sparsifying transform, we may then apply any of the
reconstruction algorithms introduced in Section 4 to each frame. The option to do
frame-by-frame reconstruction of a 3D moving image is built into the model, with
the same built-in options for the sampling scheme, reconstruction algorithm and



sparsifying transform as were outlined for the 2D case in Section 5. There is the
additional option to write the reconstructed video sequence to an AVI file.

However, an alternative approach is possible in which we attempt to exploit the
temporal dependence between frames. To do this, we consider the entire video
sequence, and represent it as a single vector

of length NF . The sampling process may now be written in the form of a single
acquisition as

. 0 0 || x
y = Dx = 0 &, ... 0 |x
0 0 ... DX

We may now choose ¥ to be a 3D sparsifying transform and apply any of the
reconstruction algorithms introduced in Section 4 to reconstruct the entire video
sequence.

The option to do joint reconstruction of a 3D moving image is also built into the
model with the same options for the sampling scheme and reconstruction algorithm.
Concerning the transform option, a number of orthogonal 3D tensor wavelet
transforms are available: Haar wavelets, Daubechies-D4 wavelets and Daubechies-
D8 wavelets. The D4 and D8 wavelets are related to the 5-3 and 9-7 biorthogonal
wavelets available for 2D reconstruction. Each of these transforms in fact requires
the inputted data to be an exact data cube consisting of d frames of a d xd image,
iie. N=d? and F =d. The reconstructed video sequence can also be written to an
AV file.

CAMEOSIM was again used to simulate a moving image, based upon the image of
the vehicle against a clutter-free background introduced in Section 6.8. The temporal
dependence between the slides is well-structured: the vehicle moves from the left to
right of the shot at constant speed. The video sequence consists of 64 frames where
each frame is a 64x64 pixel image, giving a 64x64x64 datacube. Both frame-by-frame
and joint reconstructions were performed, using the £1 sampling scheme, the |-
projection algorithm and Haar wavelets (either 2D or 3D). The undersampling ratio
was set to 0 = 0.4, and the tuning parameter was optimized in terms of the solution
RMSE of the entire datacube.

Results for three selected frames are shown in Figure 6.24. There is clear evidence
from the RMSEs that the joint reconstruction gives a more accurate reconstruction
than the frame-by-frame reconstruction. Indeed, the difference may be observed
visually: more detail, both of the vehicle and the background, is reconstructed using
the joint approach. There are two reasons for this improvement. Firstly, the joint



approach takes into account the temporal dependence between the frames. 3D
wavelets therefore represent a more efficient means of capturing the information
than a collection of 2D transforms. This means that the datacube is more
compressible in the 3D wavelet basis and, as we have seen, compressibility is the key
image-dependent factor which impacts on accuracy of reconstruction. Secondly,
there is a scaling up of the dimension of the wavelet transforms from 64x64 to
64x64x64. This increase in dimension in itself will cause the datacube to be more
compressible, further compounding the difference.

The video sequence used here exhibits a high degree of structured temporal
dependence. If the temporal dependence is less straightforward, it would be
expected that the joint reconstruction would offer less of an advantage. Also, there
is the issue of running time. Overall running time for frame-by-frame reconstruction
was 142.5s (= 2.5 minutes), compared to 1567s (= 26 minutes) for joint
reconstruction. Scaling the dimension in such a radical way has considerable
implications for running time.

Despite these caveats, a clear message emerges from this experiment: it is possible
to extend the CS approach to moving scenes, provided we can model the scene as a
series of static frames. More than this, we can actually do even better by exploiting
temporal dependency by means of 3D transforms.

frame original frame-by-frame joint
reconstruction reconstruction
24
RMSE: 7.92 RMSE: 4.99
32 =8 W =9
RMSE: 9.06 RMSE: 6.27
40
RMSE: 8.33 RMSE: 5.92

Figure 6.24: Comparison of selected frames for frame-by-frame and joint reconstruction



CONCLUSION

The results of testing on the proposed camera model are promising in a variety of
areas, including single-band and multi-spectral imaging, and 3D dynamic imaging.
Furthermore, we observe robustness in the sense of a controlled degradation in
image quality in the presence of sampling noise and foreground/background clutter .
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